Evaluating the landfill leachate quality using leachate pollution index (LPI) and technique for order preference by similarity to an ideal solution (TOPSIS)
PDF

Keywords

landfill
leachate quality
Leachate Pollution Index
TOPSIS

How to Cite

Tałałaj, I. A., & Hajduk, S. (2024). Evaluating the landfill leachate quality using leachate pollution index (LPI) and technique for order preference by similarity to an ideal solution (TOPSIS). Economics and Environment, 88(1), 667. https://doi.org/10.34659/eis.2024.88.1.667

Abstract

Variability and diversity of landfill leachate cause difficulties in assessing the actual degree of threat to the environment and selecting an appropriate method of disposal or treatment. Therefore, quantifying leachate contamination potential is essential in landfill management and could be used to assess the accuracy of landfill operation and its impact on surrounding areas. The aim of this paper was to evaluate the performance of the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method and its suitability in determining leachate pollution potential in comparison to the Leachate Pollution Index (LPI) method. For this purpose, the quality of leachate from the landfill, collected four times a year from 2004 to 2021, was analysed. The following parameters were monitored: pH, EC, Pb, Cu, Zn, Cr, and Hg. On the basis of the measured parameters, the LPI and TOPSIS indexes were calculated. The obtained results indicated that the TOPSIS method is more sensitive and accurate in observing changes in leachate quality. It can be applied to any number of contaminant parameters without restrictions on scope, quantity, or their relative importance. It can also be used to compare the variations in leachate quality over time or to analyse differences in leachate quality among various landfill sites.

PDF

References

Abunama, T., Moodley, T., Abualqumboz, M., Kumari, S., & Bux, F. (2021). Variability of leachate quality and polluting potentials in light of leachate pollution index (LPI) – A global perspective. Chemosphere, 282, 131119. https://doi.org/10.1016/j.chemosphere.2021.131119.

Abunama, T., Othman, F., Ansari, M., & El-Shafie, A. (2019). Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Environmental Science and Pollution Research, 26(4), 3368-3381. https://doi.org/10.1007/s11356-018-3749-5

Act from 12 July 2019. Act on regulation of the Minister of Marine Economy and Inland Navigation on substances particularly harmful to the aquatic environment and conditions to be met when discharging waste water into waters or into the ground, and when discharging rainwater or snowmelt into waters or into water facilities. Journal of Laws 2019, item 1311, as amended. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (in Polish).

Adelopo, A. O., Haris, P. I., Alo, B. I., Huddersman, K., & Jenkins, R. O. (2018). Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors. Waste Management, 78, 227-237. https://doi.org/10.1016/j.wasman.2018.05.040

Adhikari, B., Parajuli, A., Manandhar, D. R., & Khanal, S. N. (2020). Chemical Assessment of Different Landfill Leachate in Nepal. IOP Conference Series: Earth and Environmental Science, 578. https://doi.org/10.1088/1755-1315/578/1/012022

Agbozu, I. Eb., Oghama, O. E., & Akinyemi, O. O. (2015). Leachate contamination potential of a waste dumpsite in Effurun City, Southern Nigeria using the leachate pollution index. African Journal of Science Technology, Innovation & Development, 7(4), 220-229. https://doi.10.1080/20421338.2015.1069934

APHA. (2005). Standard Methods for the Examination of Water and Wastewater: 21st edition. Washinghton: American Public Health Association, ISBN-10 0875530478.

Arabameri, M., Javid, A., & Roodbari, A. (2017). Artificial neural network (ANN) modeling of cod reduction from landfill leachate by the ultrasonic process. Environment Protection Engineering, 43, 59-73. https://doi.org/10.37190/epe170105

Azadi, S., Amiri, H., & Rakhshandehroo, G. R. (2016). Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills. Waste Management, 55, 220-230. https://doi.org/10.1016/j.wasman.2016.05.025

Aziz, H. A., Umar, M., & Yusoff, M. S. (2010). Variability of Parameters Involved in Leachate Pollution index and Determination of LPI from Four Landfills in Malaysia. International Journal of Chemical Engineering, 3, 1-6. https://doi.org/10.1155/2010/747953

Bhalla, B., Saini, M. S., & Jha, M. K. (2014). Assessment of Municipal Solid Waste Landfill Leachate Treatment Efficiency by Leachate Pollution Index. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), 8447-8454, ISSN: 2319-8753.

Boateng, T. K., Opoku, F., & Akoto, O. (2018). Quality of leachate from the Oti Landfill Site and its effects on groundwater: a case history. Environmental Earth Sciences, 77, 435. https://doi.org/10.1007/s12665-018-7626-9

Długosz, J. (2012). Characteristics of the composition and quantity of leachate from municipal landfills - a review. Archives of Waste Management and Environmental Protection, 14(4), 19-30, ISSN 1733-4381.

Dolui, S., & Sarkar, S. (2021). Identifying potential landfill sites using multicriteria evaluation modeling and GIS techniques for Kharagpur city of West Bengal, India. Environmental Challenges, 5, 100243. https://doi.org/10.1016/j.envc.2021.100243

Ergene, D., Aksoy, A., & Sanin, F. D. (2022). Comprehensive analysis and modeling of landfill leachate. Waste Management, 145, 48-59. https://doi.org/10.1016/j.wasman.2022.04.030

Estay-Ossandon, C., Mena-Nieto, A., & Harsch, N. (2018). Using a fuzzy TOPSIS-based scenario analysis to improve municipal solid waste planning and forecasting: A case study of Canary archipelago (1999-2030). Journal of Cleaner Production, 176, 1198-1212. https://doi.org/10.1016/j.jclepro.2017.10.324

Eurostat. (2022). Waste generation and treatment. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics

Godwin, A., & Oghenekohwiroro, E. (2016). Leachate characterisation and leachate pollution index from landfill dump sites in Warri Metropolis, Nigeria. International Letters of Natural Sciences, 57, 41-48. https://doi.org/10.56431/p-w86jc8.

Guruprasad, A., Anjali, K., & Robin, C. (2018). Evaluation of a performance index for municipal wastewater treatment plants using MCDM – TOPSIS. International Journal of Technology, 9(4), 715-726. https://doi.org/10.14716/ijtech.v9i4.102

Hajduk, S. (2021). Multi-Criteria Analysis of Smart Cities on the Example of the Polish Cities. Resources, 10(5), 44. https://doi.org/10.3390/resources10050044

Hussein, M., Yoneda, K., Mohd, Z., Zaki, N. O., & Amir, A. (2019). Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environmental Nanotechnology, Monitoring and Management, 12, 100232. https://doi.org/10.1016/j.enmm.2019.100232

Hwang, C.-L., & Yoon, K. (1981). Methods for Multiple Attribute Decision Making. In C.L. Hwang & K. Yoon (Eds.), Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems (pp. 58-191). Berlin: Springer, http://dx.doi.org/10.1007/978-3-642-48318-9.

Ishii, K., Sato, M., & Ochiai, S. (2022). Prediction of leachate quantity and quality from a landfill site by the long short-term memory model. Journal of Environmental Management, 310, 114733. https://doi.org/10.1016/j.jenvman.2022.114733

Kale, S. S., Kadam, A. K., Kumar, S., & Pawar, N. J. (2010). Evaluating pollution potential of leachate from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers. Environmental Monitoring and Assessment, 162(1-4), 327-346. https://doi.org/10.1007/s10661-009-0799-7

Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank, https://hdl.handle.net/10986/30317.

Kim, Y., Chung, E. S., Jun, S. M., & Kim, S. U. (2013). Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS. Resources, Conservation and Recycling, 73, 23-32. https://doi.org/10.1016/j.resconrec.2012.12.009

Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A Review. Critical Reviews in Environmental Science and Technology, 32(4), 297-336. https://doi.org/10.1080/10643380290813462

Kulikowska, D., & Klimiuk, E. (2008). The Effect of Landfill Age on Municipal Leachate Composition. Bioresource Technology, 99(13), 5981-5985. https://doi.org/10.1016/j.biortech.2007.10.015

Kumar, D., & Alappat, B. J. (2005a). Analysis of Leachate Pollution Index and Formulation of Sub-leachate Pollution Indices. Waste Management & Research, 23(3), 230-239. https://doi.org/10.1177/0734242x05054875

Kumar, D., & Alappat, B. J. (2005b). Evaluating Leachate Contamination Potential of Landfill Sites Using Leachate Pollution Index. Clean Technologies and Environmental Policy, 7, 190-197. http://dx.doi.org/10.1007/s10098-004-0269-4

Liu, H.-L., & Sang, S.-X. (2010). Study on the law of heavy metals leaching in municipal solid waste landfill. Environmental Monitoring and Assessment, 165(1-4), 349-363. https://doi.org/10.1007/s10661-009-0951-4

Lothe, A. G., & Sinha, A. (2017). Development of model for prediction of Leachate Pollution Index (LPI) in absence of leachate parameters. Waste Management, 63, 327-336. https://doi.org/10.1016/j.wasman.2016.07.026

Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: Practices and challenges. Waste Management, 29(11), 2902-2906, doi: 10.1016/j.wasman.2008.07.015..

Martowibowo, S. Y., & Riyanto, H. (2011). Suitable multi criteria decision analysis tool for selecting municipal solid waste treatment in the city of Bandung. Journal of KONES, 18(4), 273-280, https://bibliotekanauki.pl/articles/247200,

Masouleh, S. Y., Mozaffarian, M., Dabir, B., & Ramezani, S. F. (2022). COD and ammonia removal from landfill leachate by UV/PMS/Fe2+ process: ANN/RSM modeling and optimization. Process Safety and Environmental Protection, 159, 716-726. https://doi.org/10.1016/j.psep.2022.01.031

Mir, M. A., Ghazvinei, P. T., Sulaiman, N. M. N., Basri, N. E. A., Saheri, S., Mahmood, N. Z., Jahan, A., Begum, R. A., & Aghamohammadi, N. (2016). Application of TOPSIS and VIKOR improved version in a multi criteria decision analysis to develop an optimized municipal solid waste management model. Journal of Environmental Management, 166(15), 109-115. https://doi.org/10.1016/j.jenvman.2015.09.028

Mishra, H., Rathod, M., Karmakar, S., & Kumar, R. (2016). A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India. Environmental Monitoring and Assessment, 188(6), 357. https://doi.org/10.1007/s10661-016-5356-6

Mishra, S., Tiwary, D., Ohri, A., & Agnihotri, A. K. (2019). Impact of Municipal Solid Waste Landfill leachate on groundwater quality in Varanasi, India. Groundwater Sustainable Development, 9, 100230. https://doi.org/10.1016/j.gsd.2019.100230

Mor, S., Negi, P., Khaiwal, R., 2018. Assessment of groundwater pollution by landfills in India using leachate pollution index and estimation of error. Environ. Nanotechnol. Monit. Manag. 10, 467-476. https://doi.org/10.1016/j.enmm.2018.09.002

Munir, S., Tabinda, A. B., Ilyas, A., & Mushtaq, T. (2014). Characterization of leachate and Leachate Pollution Index from dumping sites in Lahore, Pakistan. Journal of Applied Environmental Biological Sciences, 4(4), 165-170, https://www.researchgate.net/publication/ 313477430_Characterization_of_Leachate_and_Leachate_Pollution_Index_from_Dumping_Sites_in_Lahore_Pakistan.

Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1-12. https://doi.org/10.1016/j.envpol.2016.09.002

Nyirenda, J., & Mwansa, P. M. (2022). Impact of leachate on quality of ground water around Chunga Landfill, Lusaka, Zambia and possible health risks. Heliyon, 8(12), https://doi.org/10.1016/j.heliyon.2022.e12321

Rajoo, K. S., Karam, D. S., Ismail, A., & Arifin, A. (2020). Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC). Environmental Nanotechnology, Monitoring & Management, 14, 100372. https://doi.org/10.1016/j.enmm.2020.100372

Roy, J., Adhikary, K., & Kar, S. (2019). Credibilistic TOPSIS model for evaluation and selection of municipal solid waste disposal methods. In A. Kalamadhad, J. Singh & K. Dhamodharan (Eds.), Advances in waste management (pp. 243-261). Singapore: Springer. https://doi.org/10.1007/978-981-13-0215-2_17

Singh, D., & Kumar, P. (2022). Health risk index development for municipal solid waste using TOPSIS model. International Journal of Civil Engineering, 9(11), 23-32. https://doi.org/10.14445/23488352/ijce-v9i11p104

Sojda, A. (2020). Smart city index based on TOPSIS method. Scientific Papers of Silesian University of Technology, 148, 709-718. https://doi.org/10.29119/1641-3466.2020.148.52

Szymańska-Pulikowska, A. (2010). Assessment of leachate waters property from national landfill sites. Infrastructure and Ecology of Rural Areas, 8(20), 141-150, chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.infraeco.pl/pl/art/a_16060.htm?plik=883.

Tałałaj, I. A. (2013). Analysis of Variability of Leachate Pollution Index from Operated and Closed Landfills. Economics and Environment, 4(47), 78-86, https://ekonomiaisrodowisko.pl/journal/issue/view/10/10.

Teng, C., Zhou, K., Peng, C., & Chen, W. (2021). Characterization and treatment of landfill leachate: A review. Water Research, 203, 117525. https://doi.org/10.1016/j.watres.2021.117525

Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Variability of Parameters Involved in Leachate Pollution Index and Determination of LPI from Four Landfills in Malaysia. International Journal of Chemical Engineering, (3), 304-309. https://doi.org/10.1155/2010/747953

Wdowczyk, A., & Szymańska-Pulikowska, A. (2021). Comparison of Landfill Leachate Properties by LPI and Phytotoxicity-A Case Study. Frontiers in Environmental Science, 9, 693112. https://doi.10.3389/fenvs.2021.693112

Yang, H., Zhang, X., Fu, K., Sun, X., Hou, S., & Tan, Y. (2023). Comprehensive evaluation of urban water supply security based on the VIKOR-TOPSIS method. Environmental Scienceand Pollution Research, 30, 8363-8375. https://doi.org/10.1007/s11356-022-24493-5

Zavadskas, K., Mardani, A., Turskis, Z., Jusoh, A., & Nor, K. M. D. (2016). Development of TOPSIS Method to Solve Complicated Decision-Making Problems – An Overview on Developments from 2000 to 2015. International Journal of Information Technology & Decision Making, 15(3), 645-682. https://doi.org/10.1142/S0219622016500176

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment

Downloads

Download data is not yet available.