Prediction of dynamics change in biowaste quantity collected in functionally different regions. A case study of Poland
PDF

Keywords

biodegradable
dynamics of change
prediction
biowaste quantity

How to Cite

Tałałaj, I. A., Hajduk, S., & Wiszniewska, A. (2025). Prediction of dynamics change in biowaste quantity collected in functionally different regions. A case study of Poland. Economics and Environment, 93(2), 920. https://doi.org/10.34659/eis.2025.93.2.920

Abstract

The aim of the paper is to determine the dynamics of change in biowaste quantity as well as to forecast the amount of biowaste generated in 4 functionally different regions of Poland. The analysis was made for a period of 16 years (2007-2022), and a prognosis was made for the next 4 years (2023-2026). Based on the obtained data, the following calculations were made: share of biowaste from households in the quantity of total municipal biowaste, accumulation rate of biowaste from households, medium-term change rate in the amount of biowaste from households, and prediction of changes in the biowaste accumulation index until 2026. In all the analysed regions, an increasing trend in the collected biowaste mass index has been observed. The agricultural and recreational regions were characterised by the highest dynamics of changes in collected biowaste quantity (T=0.21 and 0.25, respectively) and by the lowest values of their accumulation indicator (48.9 and 44.7 kg/ca per year, respectively). The highest quantity of biowaste is predicted to be generated in urbanised and industrialised regions (62.1 and 53.2 kg/ca per year, respectively).

PDF

References

Act from 14 December 2012. Waste Act. Journal of Laws 2013, item 21, as amended. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20130000021 (in Polish).

Ahrens, T., Drescher-Hartung, S., & Anne, O. (2017). Sustainability of the Biowaste Utilization to Energy Production. In J.S. Tumuluru (Ed.), Biomass Volume Estimation and Valorization for Energy (pp. 165-185). nTech. https://doi.org/10.5772/62678

Ahuja, N. J., & Bahukhandi, K. D. (2012). Expert systems for Solid Waste Management: A Review. International Review on Computers and Software (IRECOS), 7(4), 1608-1613. https://www.researchgate.net/publication/288578597_Expert_systems_for_solid_waste_management_A_review

Araiza-Aguilar, J. A., Rojas-Valencia, M. N., & Aguilar-Vera, R. A. (2020). Forecast generation model of municipal solid waste using multiple linear regression. Global Journal of Environmental Science and Management, 6(1), 1-14. https://doi.org/10.22034/gjesm.2020.01.01

Ayeleru, O. O., Fajimi, L. I., Oboirien, B. O., & Olubambi, P. A. (2021). Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: A case study of Johannesburg, South Africa. Journal of Cleaner Production, 289, 125671. https://doi.org/10.1016/j.jclepro.2020.125671

Azadi, S., & Karimi-Jashni, A. (2016). Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran. Waste Management, 48, 14-23. https://doi.org/10.1016/j.wasman.2015.09.034

Azarmi, S. L., Oladipo, A. A., Roozbeh, V., & Alipour, H. (2018). Comparative Modelling and Artificial Neural Network Inspired Prediction of Waste Generation Rates of Hospitality Industry: The Case of North Cyprus. Sustainability, 10(9), 2965. https://doi.org/10.3390/su10092965

Babalola, M. A. (2020). A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment Alternatives: The Case of Oita City, Japan. Sustainability, 12, 1916. https://doi.org/10.3390/su12051916

Baquero, M., Cifrian, E., Pérez-Gandarillas, L., & Andres, A. (2022). Methodology Proposed for Estimating Biowaste Generation Using Municipal Rurality Indexes. Waste Biomass Valor, 13, 941-954. https://doi.org/10.1007/s12649-021-01571-2

Batinic, B., Vukmirovic, S., Vujic, G., Stanisavljevic, N., Ubavin, D., & Vukmirovic, G. (2011). Using ANN model to determine future waste characteristics in order to achieve specific waste management targets - case study of Serbia. Journal of Scientific & Industrial Research, 70(7), 513-518. https://www.researchgate.net/publication/266243404_Using_ANN_model_to_determine_future_waste_characteristics_in_order_to_achieve_specific_waste_management_targets_-case_study_of_Serbia

Boschin, G., Scigliuolo, G. M., Resta, D., & Arnoldi, A. (2014). ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chemistry, 145, 34-40. https://doi.org/10.1016/j.foodchem.2013.07.076

Ceylan, Z. (2020). Estimation of municipal waste generation of Turkey using socio-economic indicators by Bayesian optimization tuned Gaussian process regression. Waste Management and Research, 38(8), 840-850. https://doi.org/10.1177/0734242X20906877

Chioatto, E., Khan, M. A., & Sospiro, P. (2023). Sustainable solid waste management in the European Union: Four countries regional analysis. Sustainable Chemistry and Pharmacy, 33, 101037. https://doi.org/10.1016/j.scp.2023.101037

Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives, Pub. L. No. 32008L0098, 312 OJ L (2008). https://eur-lex.europa.eu/eli/dir/2008/98/oj/eng

Generowicz, A. (2020). Evaluation of the Ecological Effect of Biodegradable Waste Processing in a Comprehensive Municipal Waste Management System. Architecture, Civil Engineering, Environment, 13(1), 121-128. https://doi.org/10.21307/acee-2020-010

Ghinea, C., Drăgoi, E. N., Comăniţă, E. D., Gavrilescu, M., Câmpean, T., Curteanu, S., & Gavrilescu, M. (2016). Forecasting municipal solid waste generation using prognostic tools and regression analysis. Journal of Environmental Management, 182(1), 80-93. https://doi.org/10.1016/j.jenvman.2016.07.026

GUS. (2023). Statistical Yearbook of the Republic of Poland. https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-the-republic-of-poland-2023,2,25.html (in Polish).

Jalili, G. Z. M., & Noori, R. (2008). Prediction of municipal solid waste generation by use of artificial neural network: A case study of Mashhad. International Journal of Environmental Research and Public Health, 2(1), 13-22. https://www.researchgate.net/publication/27794359_Prediction_of_Municipal_Solid_Waste_Generation_by_Use_of_Artificial_Neural_Network_A_Case_Study_of_Mashhad

Janmaimool, P., & Denpaiboon, C. (2016). Influence of urbanisation on metropolitan solid waste generation and residents' hierarchy waste management behaviors. Proccedings of the 14th Pacific Regional Science Conference Organization Summer Institute, Bangkok, Thailand, 1-7. https://www.researchgate.net/publication/318708136_INFLUENCE_OF_URBANIZATION_ON_METROPOLITAN_SOLID_WASTE_GENERATION_AND_RESIDENTS'_HIERARCHY_WASTE_MANAGEMENT_BEHAVIORS

Kamran, A., Chaudhry, M. N., & Batool, S. A. (2015). Effects of socio-economic status and seasonal variation on municipal solid waste composition: a baseline study for future planning and development. Environmental Science Europe, 27, 16. https://doi.org/10.1186/s12302-015-0050-9

Karnasuta, S., & Laoanantana, P. (2022). Forecasting Models of Community Biodegradable Waste Management. Journal of Arts Management, 6(1), 47-64. https://so02.tci-thaijo.org/index.php/jam/article/download/251606/171176

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0 – A Global Snapshot of Solid Waste Management to 2050. The World Bank Group. https://openknowledge.worldbank.org/handle/10986/30317

Kulisz, M., & Kujawska, J. (2020). Prediction of Municipal Waste Generation in Poland Using Neural Network Modeling. Sustainability, 12(23), 10088. https://doi.org/10.3390/su122310088

Kumar, A., & Samadder, S. R. (2017). An empirical model for prediction of household solid waste generation rate – A case study of Dhanbad, India. Waste Management, 68, 3-15. https://doi.org/10.1016/j.wasman.2017.07.034

Kurtulus, H. O., Ucan, O. N., Sahin, U., Borat, M., & Bayat, C. (2006). Artificial neural network modelling of methane emissions at Istanbul Kemerburgaz-Odayeri landfill site. Journal of Scientific & Industrial Research, 65(2), 128-134. https://www.researchgate.net/publication/289129436_Artificial_Neural_Network_Modeling_of_Methane_Emissions_at_Istanbul_Kemerburgaz-Odayeri_Landfill_Site

Namlis, K. G., & Komilis, D. (2019). Influence of four socioeconomic indices and the impact of economic crisis on solid waste generation in Europe. Waste Management, 89, 190-200. https://doi.org/10.1016/j.wasman.2019.04.012

Nassereldeen, A., Kabbashi, S., Mohammed, A., Munif, J., & Nur, A. (2011). Integrated schedule waste management system in Kuala Lumpur using expert system. African Journal of Biotechnology, 10(81), 1871-1878. https://www.ajol.info/index.php/ajb/article/view/98670

Nguyen, K. L. P., Chuang, Y. H., Chen, H. W., & Chang, C. C. (2020). Impacts of socioeconomic changes on municipal solid waste characteristics in Taiwan. Resources, Conservation and Recycling, 161, 104931. https://doi.org/10.1016/j.resconrec.2020.104931

Saravanan, A., Karishma, S., Senthil Kumar, P., & Rangasamy, G. (2023). A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy. Fuel, 338, 127221. https://doi.org/10.1016/j.fuel.2022.127221

Seruga, P. (2021). The Municipal Solid Waste Management System with Anaerobic Digestion. Energies, 14(8), 2067. https://doi.org/10.3390/en14082067

Statistics Poland. (2023, November 15). Local Data Bank. https://bdl.stat.gov.pl/bdl/start (in Polish).

Szyba, M., & Muweis, J. (2022). The Importance of Biodegradable Waste in Transforming the Economy into a Circular Model in Poland. Polish Journal of Environmental Studies, 31(3), 2245-2253. https://doi.org/10.15244/pjoes/143491

Tatarczak, A. (2021). Statystyka. Podręcznik. Studia przypadków. Lublin: Innovatio Press. (in Polish).

Tesfamariam, E. H., Cogger, C., & Zvimba, J. N. (2022). Impact of Treatment of Biodegradable Waste on Nutrient Recovery. In M. Kacprzak, E. Attard, K.-A. Lyng, H. Raclavska, B. Singh, E. Tesfamariam & F. Vandenbulcke (Eds.), Biodegradable Waste Management in the Circular Economy (pp. 419-431). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119679523.ch15

Tot, B., Vujić, G., Srđević, Z., Ubavin, D., & Russo, M. A. T. (2017). Group assessment of key indicators of sustainable waste management in developing countries. Waste Management and Research, 35(9), 913-922. https://doi.org/10.1177/0734242X17709911

Trang, P. T. T., Dong, H. Q., Toan, D. Q., Hanh, N. T. X., & Thu, N. T. (2017). The Effects of Socio-economic Factors on Household Solid Waste Generation and Composition: A Case Study in Thu Dau Mot, Vietnam. Energy Procedia, 107, 253-258. https://doi.org/10.1016/j.egypro.2016.12.144

Tun, M. M., Juchelková, D., Raclavská, H., & Sassmanová, V. (2018). Utilization of Biodegradable Wastes as a Clean Energy Source in the Developing Countries: A Case Study in Myanmar. Energies, 11(11), 3183. https://doi.org/10.3390/en11113183

Voukkali, I., Papamichael, I., Loizia, P., & Zorpas, A. A. (2023). Urbanisation and solid waste production: prospects and challenges. Environmental Science and Pollution Research, 31, 17678-17689. https://doi.org/10.1007/s11356-023-27670-2

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Economics and Environment

Downloads

Download data is not yet available.