Abstract
This study aimed to investigate the physicochemical properties of fertiliser granules and compare their fertiliser value. The study used analytical methods, including potentiometric pH determination, the Kjeldahl method for nitrogen determination, spectrophotometry for phosphorus determination, and flame photometry for potassium and sodium determination. The content of heavy metals (Cr, Ni, As, Cd, Pb) was determined by inductively coupled plasma mass spectrometry (ICP-MS). The test material consisted of pellets made from compost (consisting of green waste: grass cuttings, leaves, and pruned branches) and slurry made from dried nettle. The results showed that the granules had pH values ranging from 7.44 to 8.20. The nitrogen content ranged from 1.77 to 2.18%, phosphorus from 0.17 to 0.38%, potassium from 0.77 to 0.90%, and sodium from 0.02 to 0.05%. In addition, the concentrations of heavy metals (Cr, Ni, As, Cd, Pb) were within acceptable limits for organic fertilisers. Studies have shown that granules made from compost and nettle slurry have favourable physicochemical properties that allow their use as a supplement to mineral fertilisation. They are characterised by an optimal pH value and a balanced content of key nutrients such as nitrogen, phosphorus, potassium, and sodium while maintaining acceptable concentrations of heavy metals. The results confirm that the tested materials meet standards for nitrogen, phosphorus, potassium, and heavy metals, confirming their suitability as safe and effective organic fertilisers. Their use can contribute not only to improving soil quality and increasing crop yields but also support sustainable development goals and fit into the concept of a circular economy.
References
Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S., Ahmed, S. M. S., Al-Gehlani, W. A. G., & Alrawaf, T. I. (2022). Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. International Journal of Environmental Research and Public Health, 19(19), 12717. http://dx.doi.org/10.3390/ijerph191912717
Amir, S., Hafidi, M., Bailly, J. R., & Revel, J. C. (2003). Characterization of humic acids extracted from sewage sludge during composting and of their Sephadex® gel fractions. Agronomie, 23(3), 269-275. http://dx.doi.org/10.1051/agro:2002090
Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456
Bai, J., Shen, H., & Dong, S. (2010). Study on eco-utilization and treatments of highway greening waste. Procedia Environmental Sciences, 2, 25-31. https://doi.org/10.1016/j.proenv.2010.10.005
Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38, 17. https://link.springer.com/article/10.1007/s13593-018-0491-9
Cai, Q.-Y., Mo, C.-H., Wu, Q.-T., Zeng, Q.-Y., & Katsoyiannis, A. (2007). Concentration and speciation of heavy metals in six different sewage sludge-composts. Journal of Hazardous Materials, 147, 1063-1072. https://doi.org/10.1016/j.jhazmat.2007.01.142
Cwalina, P., Krasowska, M., Smolewska, M. E., & Koziak, K. (2024). Effect of Composting Ashes from Biomass Combustion on Polycyclic Aromatic Hydrocarbon Content. Energies, 17(4), 840. https://doi.org/10.3390/en17040840
Górski, K., & Saba, L. (2015). Assessment of sodium and potassium levels in soil, feeds and hair of dairy cows in east-central Poland/Ocena poziomu sodu i potasu w glebie, paszach i sierści krów mlecznych z rejonu środkowo-wschodniej Polski. Environmental Protection and Natural Resources, 26(3), 28-31. http://dx.doi.org/10.1515/oszn-2015-0011
Ignatowicz, K. (2017). The impact of sewage sludge treatment on the content of selected heavy metals and their fractions. Environmental Research, 156, 19-22. https://doi.org/10.1016/j.envres.2017.02.035
Jędrczak, A. (2018). Composting and fermentation of biowaste - advantages and disadvantages of processes. Civil And Environmental Engineering Reports, 28(4), 71-87. http://dx.doi.org/10.2478/ceer-2018-0052
Khater, E. S. G. (2015). Some Physical and Chemical Properties of Compost. International Journal of Waste Resources, 5(1), 1000172. https://www.researchgate.net/publication/275407706_Some_Physical_and_Chemical_Properties_of_Compost
Kowalczyk-Juśko, A., & Szymańska, M. (2016). Poferment - Nawóz dla Rolnictwa. Warszawa: FnRRPR. (in Polish).
Lanno, M., Kriipsalu, M., Shanskiy, M., Silm, M., & Kisand, A. (2021). Distribution of Phosphorus Forms Depends on Compost Source Material. Resources, 10(10), 102. https://doi.org/10.3390/resources10100102
Obidziński, S., Cwalina, P., Kowczyk-Sadowy, M., Krasowska, M., Sienkiewicz, A., Faszczewski, D., & Szyszlak-Bargłowicz, J. (2023). The use of bread bakery waste as a binder additive in the production of fuel pellets from straw. Energies, 16(21), 7313. https://doi.org/10.3390/en16217313
Peña, H., Mendoza, H., Diánez, F., & Santos, M. (2020). Parameter selection for the evaluation of compost quality. Agronomy, 10(10), 1567. https://doi.org/10.3390/agronomy10101567
PN-EN ISO 10390:2022-09: Soil, treated biowaste and sewage sludge - pH determination.
PN-EN ISO 17294-2:2024-04: Water quality – Application of inductively excited plasma mass spectrometry (ICP-MS) – Part 2: Determination of selected elements, including uranium isotopes.
PN-EN ISO 6878:2006: Water quality - Determination of phosphorus - Spectrometric method with ammonium molybdate.
PN-G-04523:1992: Solid fuels - Determination of nitrogen content using the Kjeldahl method.
Pocius, A., Jotautiene, E., Mieldazys, R., Jasinskas, A., & Kucinskas, V. (2014). Investigation of granulation process parameters influence on granulated fertiliser compost properties. Proccedings of the 14th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 296-300. http://tf.llu.lv/conference/proceedings2015/
Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 9 sierpnia 2024 r. w sprawie wykonania niektórych przepisów ustawy o nawozach i nawożeniu. (Dz. U. z 2024r., poz. 1261). https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001261 (in Polish).
Šarauskis, E., Naujokienė, V., Lekavičienė, K., Kriaučiūnienė, Z., Jotautienė, E., Jasinskas, A., & Zinkevičienė, R. (2021). Application of granular and non-granular organic fertilisers in terms of energy, environmental and economic efficiency. Sustainability, 13(17), 9740. https://doi.org/10.3390/su13179740
Sinha, D., & Tandon, P. K. (2020). An overview of nitrogen, phosphorus and potassium: Key players of nutrition process in plants. In K. Mishra, P.K. Tandon & S. Srivastava (Eds.), Sustainable solutions for elemental deficiency and excess in crop plants (pp. 85-118). Springer.
Sykorova, P., Juchelkova, D., Kucerova, M., & Raclavski, K. (2012). The possibilities of influencing the content of nitrogen in composts utilized for energy production. Inżynieria Mineralna, 13(1), 69-79. https://bibliotekanauki.pl/articles/318294
Szewczyk, P. (2016). Kompostowanie/stabilizacja tlenowa. Przegląd Komunalny, 4, 45-48. https://portalkomunalny.pl/plus/artykul/kompostowanie-stabilizacja-tlenowa/ (in Polish).
Toledo, M., Siles, J. A., Gutiérrez, M. C., & Martín, M. A. (2018). Monitoring of the composting process of different agroindustrial waste: Influence of the operational variables on the odorous impact. Waste Management, 76, 266-274. https://doi.org/10.1016/j.wasman.2018.03.042
Wang, X., Wang, M., Zhang, J., Kong, Z., Wang, X., Liu, D., & Shen, Q. (2021). Contributions of the biochemical factors and bacterial community to the humification process of in situ large-scale aerobic composting. Bioresource Technology, 323, 124599. https://doi.org/10.1016/j.biortech.2020.124599
Wei, Y., Li, J., Shi, D., Liu, G., Zhao, Y., & Shimaoka, T. (2017). Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resources, Conservation and Recycling, 122, 51-65. https://doi.org/10.1016/j.resconrec.2017.01.024
Yu, H., Xie, B., Khan, R., & Shen, G. (2019). The changes in carbon, nitrogen components, and humic substances during organic–inorganic aerobic co-composting. Bioresource Technology, 271, 228-235. https://doi.org/10.1016/j.biortech.2018.09.088
Zhang, J., Zeng, G., Chen, Y., Yu, M., Yu, Z., Li, H., Yu, Y., & Huang, H. (2011). Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresource Technology, 102(3), 2950-2956. https://doi.org/10.1016/j.biortech.2010.11.089

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Economics and Environment