Using plastic waste to produce lightweight aggregate for RC structures
PDF (Angielski)

Słowa kluczowe

artificial aggregates
plastic aggregate
recycling
experimental tests
numerical analysis
ANSYS software

Jak cytować

Grygo, R., Bujnarowski, K., & Prusiel, J. A. (2024). Using plastic waste to produce lightweight aggregate for RC structures. Czasopismo "Economics and Environment", 89(2), 804. https://doi.org/10.34659/eis.2024.89.2.804

Abstrakt

This article compares the deflections of reinforced concrete beams with reinforcement degrees of ρ=1.02% and ρ=1.78%, made of lightweight aggregates, i.e. Certyd, LECA, and an innovative aggregate made of plastic waste. Two methods were used for the comparison experimental and computational. The computational part was performed using the finite element method (FEM) in ANSYS software. The adopted properties of lightweight concrete were sourced from the authors’ experimental research. A comparison of deflections based on the data obtained using both methods showed that, for reinforced concrete elements with a degree of reinforcement of ρ=1.02%, the smallest difference was obtained in the case of beams made of plastic waste concrete, while the highest difference was obtained for beams made of concrete with lightweight expanded clay aggregate. In the case of reinforced concrete elements with a degree of reinforcement ρ=1.78%, the lowest differences were obtained for beams made of lightweight aggregates, i.e. Certyd and LECA. For those beams that used plastic waste aggregate, the difference was 20%, compared to experimental tests.

PDF (Angielski)

Bibliografia

Abdollahnejad, Z., Mastali, M., Falah, M., Luukkonen, T., Mazari, M., & Illikainen, M. (2019). Construction and demolition waste as recycled aggregates in alkali-activated concretes. Materials, 12(23), 4016. https://doi.org/10.3390/ma12234016

Allujami, H. M., Abdulkareem, M., Jassam, T. M., Al-Mansob, R. A., Ibrahim, A., Ng, J. L., & Yam, H. C. (2022a). Mechanical properties of concrete containing recycle concrete aggregates and multi-walled carbon nanotubes under static and dynamic stresses. Case Studies in Construction Materials, 17(2), e01651. http://dx.doi.org/10.1016/j.cscm.2022.e01651

Allujami, H. M., Abdulkareem, M., Jassam, T. M., Al-Mansob, R. A., Ng, J. L., & Ibrahim, A. (2022b). Nanomaterials in recycled aggregates concrete applications: Mechanical properties and durability. A review. Cogent Engineering, 9(1), 2122885. https://doi.org/10.1080/23311916.2022.2122885

ANSYS Inc. (2013). ANSYS Mechanical APDL Verification Manual. Release 15.0. https://www.researchgate.net/profile/Girish-Prajapati-2/post/How-composites-can-be-modeled-in-ANSYS-Using-Solid185/attachment/59d6250379197b8077983549/AS%3A315291291062272%401452182710434/download/ANSYS+Mechanical+APDL+Verification+Manual.pdf

Arabiyat, S., Katkhuda, H., & Shatarat, N. (2021). Influence of using two types of recycled aggregates on shear behavior of concrete beams. Construction and Building Materials, 279, 122475. https://doi.org/10.1016/j.conbuildmat.2021.122475

Bacinskas, D., Rumsys, D., & Kaklauskas, G. (2022). Numerical Deformation Analysis of Reinforced Lightweight Aggregate Concrete Flexural Members. Materials, 15(3), 1005. https://doi.org/10.3390/ma15031005

Batayneh, M. K., Marie, I., & Asi, I. (2008). Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035

Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. Waste Management, 27(12), 1870-1876. https://doi.org/10.1016/j.wasman.2006.07.026

Buckhouse, E. R. (1997). External flexural reinforcement of existing reinforced concrete beams using bolted steel channels [Master's Theses]. Marquette University. https://epublications.marquette.edu/theses/3989

Bujnarowski, K., & Grygo, R. (2022). Właściwości kruszyw lekkich do zastosowania w budownictwie. Instal, (7-8), 71-75. https://doi.org/10.36119/15.2022.7-8.10 (in Polish).

Curry-Lindahl, K. (2019). United Nations Environment Programme. In E.A. Schofield (Ed.), Earthcare: Global Protection of Natural Areas (pp. 740-753). New York: Routledge. https://doi.org/10.4324/9780429052347

Demir, A., Ozturk, H., & Dok, G. (2016). 3D numerical modeling of RC deep beam behavior by nonlinear finite element analysis. Disaster Science and Engineering, 2(1), 13-18.

Enem, J. I., Ezeh, J. C., Mbagiorgu, M. S. W., & Onwuka, D. O. (2012). Analysis of Deep Beam Using Finite Element Method. International Journal of Applied Science and Engineering Research, 1, 348-356. https://www.semanticscholar.org/paper/Analysis-of-deep-beam-using-Finite-Element-Method-Enem-Ezeh/5dd0d96c0b72ee583a128c27c01ef24d7cd48373

EPSTAL. (2022). Stal Zbrojeniowa – Właściwości. https://www.epstal.pl/stal-zbrojeniowa/wlasciwosci (in Polish).

Ferrotto, M. F., Asteris, P. G., Borg, R. P., & Cavaleri, L. (2022). Strategies for waste recycling: The mechanical performance of concrete based on limestone and plastic waste. Sustainability, 14(3), 1706. https://doi.org/10.3390/su14031706

Haas, K. (2012). Lifecycle Cost and Performance of Plastic Pipelines in Modern Water Infrastructure. University California. http://www.truthaboutpipes.com/wp-content/uploads/2012/07/Kyle-Haas-Lifecycle-Plastic-Pipeline-Performance.pdf

Joyklad, P., Ali, N., Chaiyasarn, K., Poovarodom, N., Yooprasertchai, E., Maqbool, H. M., & Hussain, Q. (2022). Improvement of stress-strain behavior of brick-waste aggregate concrete using low-cost FCSM composites. Construction and Building Materials, 351(16), 128946. http://dx.doi.org/10.1016/j.conbuildmat.2022.128946

Kershaw, P., Katsuhiko, S., Lee, S., & Woodring, D. (2011). Plastic Debris in the Ocean. https://portals.iucn.org/library/sites/library/files/documents/2014-067.pdf

Kisała, D. (2014). Analiza nieliniowa belek żelbetowych z dyskretnym modelowaniem zbrojenia. Proceedings of the IV Ogólnopolska Konferencja Budowlana Studentów i Doktorantów Euroinżynier, Kraków, Poland. http://www.euroinzynier.edu.pl/ (in Polish).

Kisała, D. (2016). Analiza numeryczna belki strunobetonowej o prostokątnym przekroju poprzecznym. Inżynieria i Budownictwo, 72(1), 40-43. https://inzynieriaibudownictwo.pl/images/artykuly/inzyn%201-2016%20Kisala.pdf (in Polish).

Marsh McLennan. (2019, December 5). Plastic Production Is on the Rise Worldwide But Declining in Europe. https://www.brinknews.com/quick-take/plastic-production-on-the-rise-worldwide-declining-in-europe/

Mohammed, T. K., & Hama, S. M. (2022). Mechanical properties, impact resistance and bond strength of green concrete incorporating waste glass powder and waste fine plastic aggregate. Innovative Infrastructure Solutions, 7, 1-12. https://doi.org/10.1007/s41062-021-00652-4

Monteiro, P. J., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16, 698-699. https://doi.org/10.1038/nmat4930

Plastics Europe. (2022). Plastics ‒ the Facts 2022. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/

PN-EN 12350-1:2019-07 Testing fresh concrete. Part 1: Sampling and common apparatus.

PN-EN 12390-13:2021-12 Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compression.

PN-EN 12390-3:2019-07 Testing hardened concrete. Part 3: Compressive strength of test specimens.

PN-EN 12390-5:2009 Testing hardened concrete. Part 5: Flexural strength of test specimens.

PN-EN 12390-7:2019-08 Testing hardened concrete. Part 7: Density of hardened concrete.

PN-EN 13055-1:2016-07 Lightweight aggregates.

PN-EN 206+A2:2021-08 Concrete - Specification, performance, production and conformity.

Saikia, N., & de Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Construction and Building Materials, 34, 385-401. https://doi.org/10.1016/j.conbuildmat.2012.02.066

Saikia, N., & de Brito, J. (2014). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236-244. https://doi.org/10.1016/j.conbuildmat.2013.11.049

Samir, M. O. H. D., & Chris, T. M. (2005). Non-linear finite element analysis of reinforced concrete deep beam with web opening. Journal of Civil Engineering, 35(1), 3-7. http://dx.doi.org/10.12962/j20861206.v35i1.7480

Sesini, M. (2011). The Garbage Patch in the Oceans: The Problem and Possible Solutions. Columbia University. https://wtert.org/wp-content/uploads/2020/10/sesini_thesis.pdf

Silva, R. V., Jiménez, J. R., Agrela, F., & de Brito, J. (2019). Real-scale applications of recycled aggregate concrete. In J. de Brito & F. Agrela (Eds.), New Trends in Eco-Efficient and Recycled Concrete (pp. 573-589). Elsevier. https://doi.org/10.1016/B978-0-08-102480-5.00021-X

Solahuddin, B. A., & Yahaya, F. M. (2022). Properties of concrete containing shredded waste paper as an additive. Materials Today Proceedings, 51(8), 1350-1354. http://dx.doi.org/10.1016/j.matpr.2021.11.390

Ullah, Z., Qureshi, M. I., Ahmad, A., Khan, S. U., & Javaid, M. F. (2021). An experimental study on the mechanical and durability properties assessment of E-waste concrete. Journal of Building Engineering, 38, 102177. http://dx.doi.org/10.1016/j.jobe.2021.102177

Wolanski, A. J. (2004). Flexural behavior of reinforced and prestressed concrete beams using finite element analysis [Master's Theses]. Marquette University. https://epublications.marquette.edu/theses/4322

Yu, F., Song, Z., Mansouri, I., Liu, J., & Fang, Y. (2020). Experimental study and finite element analysis of PVC-CFRP confined concrete column–Ring beam joint subjected to eccentric compression. Construction and Building Materials, 254, 119081. https://doi.org/10.1016/j.conbuildmat.2020.119081

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Prawa autorskie (c) 2024 Czasopismo "Economics and Environment"

Downloads

Download data is not yet available.