Ecological, technical and economic aspects of using flint wastes as aggregate for special concretes
PDF (Angielski)

Słowa kluczowe

flint waste
green concrete
recycled concrete
aggregate substitute
aggressive environments

Jak cytować

Zegardlo, B. (2022). Ecological, technical and economic aspects of using flint wastes as aggregate for special concretes. Czasopismo "Economics and Environment", 80(1), 125-148. https://doi.org/10.34659/eis.2022.80.1.441

Abstrakt

W pracy niniejszej przeanalizowano ekologiczne, techniczne i ekonomiczne aspekty wykorzystania odpadowego krzemienia, który pozyskiwany jest podczas procesu wydobycia kredy. W pracy zaprezentowano problematykę niekorzystnego wpływu górnictwa na środowisko oraz zwrócono uwagę na powstające odpady wydobywcze. Odpadowy krzemień zaproponowano wykorzystać w formie rozkruszonej, jako substytutu wysokiej, jakości kruszywa do kompozytów cementowych odpornych na działanie środowisk agresywnych chemicznie. Jako kompozyty kontrolne wykorzystano betony tradycyjne, które zawierały w swojej objętości kruszywa żwirowe i bazaltowe. W związku z zadowalającymi wynikami przeprowadzonych testów opisany sposób unieszkodliwiania odpadu przeanalizowano również pod kątem możliwych korzyści ekonomicznych. Wnioski z przeprowadzonych badań dowiodły, że rozkruszone odpady krzemienia pod względem technicznym dorównują wysokiej jakości kruszywom specjalnym natomiast koszty ich pozyskania i wytworzenia w odpowiednich systemach ich deponowania mogą być niższe niż najtańszych dostępnych na rynku kruszyw tradycyjnych żwirowych.

PDF (Angielski)

Bibliografia

Atiş, C. (2005). Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cement and Concrete Research, 35, 1112-1121. https://doi.org/10.1016/j.cemconres.2004.07.037

Becla, A., Czaja, S., & Zielińska, A. (2012). Cost-benefit analysis in the valuation of the natural environment. Warsaw: Difin.

Boardman, A. E., Greenberg, D., Vining, A., & Weimer, D. (2006). Cost-Benefit Analysis: Concepts and Practice, 3rd edition. Upper Saddle River. New Jersey: Pearson Prentice Hall.

Bukowski, Z. (2014). A plan for recycling. Recycling, 7-8, 16-17.

Bursztyka, P. (2019). Design and analysis of basic properties of concrete composite containing silica waste in its composition. [Thesis under the direction of Bartosz Zegardło]. Biała Podlaska: PSW.

Czarnecki, L., Broniewski, T., & Henning, O. (1995). Chemistry in Building Industry, Warsaw: Arkady.

Czarnecki, L., Łukowski, P., Garbacz, A., & Chmielewska, B. (2007). Ćwiczenia laboratoryjne z chemii budowlanej, Warsaw: OWPW.

Debieb, H., Farid, S., Kenai, L., & Said, A. (2008). The use of coarse and fine crushed bricks as aggregate in concrete, Construction and Building Materials, 25, 886-893.

Gruner, M. (1983). Corrosion and protection of concrete, Warsaw: Arkady.

Góralczyk, S., & Kukielska, D. (2010). Quality of domestic aggregates. Mining and Geoengineering, 34, 211-224.

Hansen, H., & Narud, H. (2003). Strength of recycled concrete made from crushed concrete coarse aggregate, Concrete International – Design and Construction, 5, 35-48.

Jamroży, Z. (2006). Beton i jego technologie (Concrete and its technologies). Warsaw: PWN.

Kasztelewicz, Z. (2010). Rekultywacja terenów pogórniczych w polskich kopalniach odkrywkowych. Kraków: Fundacja Nauka i Tradycje Gór. AGH.

Khalloo, R., & Ali, R. (1994). Properties of concrete using crushed clinker brick as coarse aggregate. ACI Materials Journal, 4, 91-94.

Kudełko, J., & Nitek, D. (2011). Wykorzystanie odpadów z działalności górniczej jako substytutów surowców minernych. Cuprum, 3(60), 51-63.

Lipiński, A. (2021). Komentarz do ustawy: Prawo geologiczne i górnicze Dz. U. 2020, Prawne Problemy Górnictwa i Ochrony Środowiska, 1, 1-20.

Nieć, M., & Pietrzyk-Sokulska, E. (2008). Górnictwo wspomagające ochrony środowiska i jej kształtowanie – doświadczenia Kieleckich Kopalń Surowców Mineralnych. Gospodarowanie Surowcami Mieralnymi, 24(4), 251-258.

Ogrodnik, P., & Zegardło, B. (2018). Use of waste ceramic materials and polyester resins to produce synthetic composites with features of structural concretes used in construction, Chemical Industry, 97(1), 144-148.

Ogrodnik, P., Zegardło, B., & Szeląg, M. (2017). The use of heat-resistant concrete made with ceramic sanitary ware waste for a thermal energy storage, Applied Sciences, 7(12), 1-16. https://doi.org/10.3390/app7121303

Polish Committee for Standardization. (2008). Testing of mechanical and physical properties of aggregates - Part 7: Determination of density of filler – Pycnometric method. (PN-EN 1097-7:2008).

Polish Committee for Standardization. (2009). Testing hardened concrete. Flexural strength of test specimens. (PN-EN 12390-5:2009).

Polish Committee for Standardization. (2009). Testing hardened concrete – Part 7: Density of hardened concrete (EN 123907:2009).

Polish Committee for Standardization. (2011). Testing hardened concrete. Compressive strength of test specimens. (PN-EN 12390-3:2011).

Polish Committee for Standardization. (2013). Testing of mechanical and physical properties of aggregates - Part 6: Determination of density of grains and absorbability. (PN-EN 1097-6:2013-11).

Polish Committee for Standardization. (2013). Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorp tion. (PN-EN 1097-6:2013).

Rao, K. N., Jha, S., & Misra, A. (2007). Use of aggregates from recycled construction and demolition waste in concrete, Res. Conserv. Recycl., 50, 71-81.

Ryka, W., & Maliszewska, A. (1991). Słownik petrograficzny, Warsaw: Wydawnictwa Geologiczne.

Shikano, H. et al. (1990). Role of silica flour in low cement castable, Taikabutsu Overseas, 1, 17-22.

Szot-Gabryś, T. (2013). The concept of cost-benefit accounting in corporate social responsibility accounting. Warsaw: Difin.

Szuflicki, M., Malon, A., & Tymiński, M. (2021). Bilans zasobów złóż kopalin w Polsce,Warsaw: Państwowy Instytut Geologiczny.

Tokarski, D., & Zegardło, B. (2020). Costs and economic benefits of recycling electrical insulators in special concretes production, Ekonomia i Środowisko, 4, 95-102. https://ekonomiaisrodowisko.pl/journal/article/view/15

Uberman, R., Pietrzyk-Sokulska, E., & Kulczycka, J. (2014). Environmental impact assessment of mining activities-trends of change. Future: World-Europe-Poland, 2(30), 87-119.

Zegardło, B., Brzyski, P., Rymuza, K., & Bombik, A. (2018c). Analysis of the effects of aggressive environments simulating municipal sewage on recycled concretes based on selected ceramic waste. Materials, 11(12), 25-65. https://doi.org/10.3390/ma11122565

Zegardło, B., Drymała, T., & Nitychoruk, J. (2018b). Composites based on unsaturated o-phthalic polyester resin filled with glass aggregate from depleted car side windows, Chemical Industry, 97(4), 595-600.

Zegardło, B., Szeląg, M., & Ogrodnik, P. (2016). Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes – The method of production and the interfacial transition zone, Construction and Building Materials, 122, 736-742. https://doi.org/10.1016/j.conbuildmat.2016.06.112

Zegardło, B., Szeląg, M., & Ogrodnik, P. (2018a). Concrete resistant to spalling made with recycled aggregate from sanitary ceramic wastes – The effect of moisture and porosity on destructive processes occurring in fire conditions, Construction and Building Materials, 173, 58-68. https://doi.org/10.1016/j.conbuildmat.2018.04.030

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Prawa autorskie (c) 2022 Czasopismo Ekonomia i Środowisko

Downloads

Download data is not yet available.