Abstrakt
W pracy niniejszej przeanalizowano ekologiczne, techniczne i ekonomiczne aspekty wykorzystania odpadowego krzemienia, który pozyskiwany jest podczas procesu wydobycia kredy. W pracy zaprezentowano problematykę niekorzystnego wpływu górnictwa na środowisko oraz zwrócono uwagę na powstające odpady wydobywcze. Odpadowy krzemień zaproponowano wykorzystać w formie rozkruszonej, jako substytutu wysokiej, jakości kruszywa do kompozytów cementowych odpornych na działanie środowisk agresywnych chemicznie. Jako kompozyty kontrolne wykorzystano betony tradycyjne, które zawierały w swojej objętości kruszywa żwirowe i bazaltowe. W związku z zadowalającymi wynikami przeprowadzonych testów opisany sposób unieszkodliwiania odpadu przeanalizowano również pod kątem możliwych korzyści ekonomicznych. Wnioski z przeprowadzonych badań dowiodły, że rozkruszone odpady krzemienia pod względem technicznym dorównują wysokiej jakości kruszywom specjalnym natomiast koszty ich pozyskania i wytworzenia w odpowiednich systemach ich deponowania mogą być niższe niż najtańszych dostępnych na rynku kruszyw tradycyjnych żwirowych.
Bibliografia
Atiş, C. (2005). Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cement and Concrete Research, 35, 1112-1121. https://doi.org/10.1016/j.cemconres.2004.07.037
Becla, A., Czaja, S., & Zielińska, A. (2012). Cost-benefit analysis in the valuation of the natural environment. Warsaw: Difin.
Boardman, A. E., Greenberg, D., Vining, A., & Weimer, D. (2006). Cost-Benefit Analysis: Concepts and Practice, 3rd edition. Upper Saddle River. New Jersey: Pearson Prentice Hall.
Bukowski, Z. (2014). A plan for recycling. Recycling, 7-8, 16-17.
Bursztyka, P. (2019). Design and analysis of basic properties of concrete composite containing silica waste in its composition. [Thesis under the direction of Bartosz Zegardło]. Biała Podlaska: PSW.
Czarnecki, L., Broniewski, T., & Henning, O. (1995). Chemistry in Building Industry, Warsaw: Arkady.
Czarnecki, L., Łukowski, P., Garbacz, A., & Chmielewska, B. (2007). Ćwiczenia laboratoryjne z chemii budowlanej, Warsaw: OWPW.
Debieb, H., Farid, S., Kenai, L., & Said, A. (2008). The use of coarse and fine crushed bricks as aggregate in concrete, Construction and Building Materials, 25, 886-893.
Gruner, M. (1983). Corrosion and protection of concrete, Warsaw: Arkady.
Góralczyk, S., & Kukielska, D. (2010). Quality of domestic aggregates. Mining and Geoengineering, 34, 211-224.
Hansen, H., & Narud, H. (2003). Strength of recycled concrete made from crushed concrete coarse aggregate, Concrete International – Design and Construction, 5, 35-48.
Jamroży, Z. (2006). Beton i jego technologie (Concrete and its technologies). Warsaw: PWN.
Kasztelewicz, Z. (2010). Rekultywacja terenów pogórniczych w polskich kopalniach odkrywkowych. Kraków: Fundacja Nauka i Tradycje Gór. AGH.
Khalloo, R., & Ali, R. (1994). Properties of concrete using crushed clinker brick as coarse aggregate. ACI Materials Journal, 4, 91-94.
Kudełko, J., & Nitek, D. (2011). Wykorzystanie odpadów z działalności górniczej jako substytutów surowców minernych. Cuprum, 3(60), 51-63.
Lipiński, A. (2021). Komentarz do ustawy: Prawo geologiczne i górnicze Dz. U. 2020, Prawne Problemy Górnictwa i Ochrony Środowiska, 1, 1-20.
Nieć, M., & Pietrzyk-Sokulska, E. (2008). Górnictwo wspomagające ochrony środowiska i jej kształtowanie – doświadczenia Kieleckich Kopalń Surowców Mineralnych. Gospodarowanie Surowcami Mieralnymi, 24(4), 251-258.
Ogrodnik, P., & Zegardło, B. (2018). Use of waste ceramic materials and polyester resins to produce synthetic composites with features of structural concretes used in construction, Chemical Industry, 97(1), 144-148.
Ogrodnik, P., Zegardło, B., & Szeląg, M. (2017). The use of heat-resistant concrete made with ceramic sanitary ware waste for a thermal energy storage, Applied Sciences, 7(12), 1-16. https://doi.org/10.3390/app7121303
Polish Committee for Standardization. (2008). Testing of mechanical and physical properties of aggregates - Part 7: Determination of density of filler – Pycnometric method. (PN-EN 1097-7:2008).
Polish Committee for Standardization. (2009). Testing hardened concrete. Flexural strength of test specimens. (PN-EN 12390-5:2009).
Polish Committee for Standardization. (2009). Testing hardened concrete – Part 7: Density of hardened concrete (EN 123907:2009).
Polish Committee for Standardization. (2011). Testing hardened concrete. Compressive strength of test specimens. (PN-EN 12390-3:2011).
Polish Committee for Standardization. (2013). Testing of mechanical and physical properties of aggregates - Part 6: Determination of density of grains and absorbability. (PN-EN 1097-6:2013-11).
Polish Committee for Standardization. (2013). Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorp tion. (PN-EN 1097-6:2013).
Rao, K. N., Jha, S., & Misra, A. (2007). Use of aggregates from recycled construction and demolition waste in concrete, Res. Conserv. Recycl., 50, 71-81.
Ryka, W., & Maliszewska, A. (1991). Słownik petrograficzny, Warsaw: Wydawnictwa Geologiczne.
Shikano, H. et al. (1990). Role of silica flour in low cement castable, Taikabutsu Overseas, 1, 17-22.
Szot-Gabryś, T. (2013). The concept of cost-benefit accounting in corporate social responsibility accounting. Warsaw: Difin.
Szuflicki, M., Malon, A., & Tymiński, M. (2021). Bilans zasobów złóż kopalin w Polsce,Warsaw: Państwowy Instytut Geologiczny.
Tokarski, D., & Zegardło, B. (2020). Costs and economic benefits of recycling electrical insulators in special concretes production, Ekonomia i Środowisko, 4, 95-102. https://ekonomiaisrodowisko.pl/journal/article/view/15
Uberman, R., Pietrzyk-Sokulska, E., & Kulczycka, J. (2014). Environmental impact assessment of mining activities-trends of change. Future: World-Europe-Poland, 2(30), 87-119.
Zegardło, B., Brzyski, P., Rymuza, K., & Bombik, A. (2018c). Analysis of the effects of aggressive environments simulating municipal sewage on recycled concretes based on selected ceramic waste. Materials, 11(12), 25-65. https://doi.org/10.3390/ma11122565
Zegardło, B., Drymała, T., & Nitychoruk, J. (2018b). Composites based on unsaturated o-phthalic polyester resin filled with glass aggregate from depleted car side windows, Chemical Industry, 97(4), 595-600.
Zegardło, B., Szeląg, M., & Ogrodnik, P. (2016). Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes – The method of production and the interfacial transition zone, Construction and Building Materials, 122, 736-742. https://doi.org/10.1016/j.conbuildmat.2016.06.112
Zegardło, B., Szeląg, M., & Ogrodnik, P. (2018a). Concrete resistant to spalling made with recycled aggregate from sanitary ceramic wastes – The effect of moisture and porosity on destructive processes occurring in fire conditions, Construction and Building Materials, 173, 58-68. https://doi.org/10.1016/j.conbuildmat.2018.04.030
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Prawa autorskie (c) 2022 Czasopismo Ekonomia i Środowisko