Abstrakt
One of the important metter of environmental care is effective sewage treatment. Centralised sewage treatment with high efficiency dominates in Poland. However, highly dispersed properties often require the use of other alternative solutions. The aim of the paper is to compare the impact of two sewage treatment methods on the environment: conventional (PWWTP) and plant-pond (PPST). To assess the operation of both treatment plants and their environmental impact, emergy calculation and emergy indicators such as ELR, EYR, and ESI were used. It was found that the PPST treatment plant burdens the environment less. The current operation of the conventional treatment plant absorbs over 87% of the total emergy, while in the case of the biological treatment plant it is 0.40%. ELR for PPST was 5.58, while for PWWTP it was as much as 1809.09. The efficiency of sewage treatment in both treatment plants is similar. BOD5 reduction was 87.5% for PPST and 96.7% for PWWTP. For both treatment plants, an attempt was made to identify other environmental benefits, such as the generation and use of by-products, the possibility of using treated sewage for irrigation purposes or creating a biodiversity site. An attempt was made to quantify some of the additional benefits.
Bibliografia
Agaton, C. B., & Guila, P. M. C. (2023). Ecosystem Services Valuation of Constructed Wetland as a Nature-Based Solution to Wastewater Treatment. Earth, 4(1), 78-92. https://doi.org/10.3390/earth4010006
Alabaster, G., Johnston, R., Thevenon, F., & Shantz, A. (2021). Progress on Wastewater Treatment. Global status and acceleration needs for SDG indicator 6.3.1. https://unhabitat.org/sites/default/files/2021/08/sdg6_indicator_report_631_progress_on_wastewater_treatment_2021_english_pages.pdf
Alizadeh, S., Zafari-Koloukhi, H., Rostami, F., Rouhbakhsh, M., & Avami, A. (2020). The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses. Journal of Cleaner Production, 249, 119327. https://doi.org/10.1016/j.jclepro.2019.119327
Bakshi, B. R. A. (2000). Thermodynamic framework for ecologically conscious process systems engineering. Computers & Chemical Engineering, 24(2-7), 1767-1773. https://doi.org/10.1016/S0098-1354(00)00462-2
Birol, E., Karousakis, K., & Koundouri, P. (2006). Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecological Economics, 60(1), 145-156. https://doi.org/10.1016/j.ecolecon.2006.06.002
Björklund, J., Geber, U., & Rydberg, T. (2001). Emergy analysis of municipal wastewater treatment and generation of electricity by digestion of sewage sludge. Resources, Conservation and Recycling, 31(4), 293-316. https://doi.org/10.1016/S0921-3449(00)00091-4
Brown, M. T., Campbell, D. E., De Vilbiss, Ch., & Ulgiati, S. (2016). The geobiosphere emergy baseline: A synthesis. Ecological Modelling, 339, 92-95. https://doi.org/10.1016/j.ecolmodel.2016.03.018
Campos, J. L., Valenzuela-Heredia, D., Pedrouso, A., Val del Río, A., Belmonte, M., & Mosquera-Corral, A. (2016). Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. Journal of Chemistry, 3796352. https://doi.org/10.1155/2016/3796352
Cao, K., & Feng, X. (2007). The Emergy Analysis of Multi-Product Systems. Process Safety and Environmental Protection, 85(5), 494-500. https://doi.org/10.1205/psep07007
Chen, Z. M., Chen, G. Q, Chen, B., Zhou, J. B., Yang, Z. F., & Zhou, Y. (2009). Net ecosystem services value of wetland: Environmental economic account. Communications in Nonlinear Science and Numerical Simulation, 14(6), 2837-2843. https://doi.org/10.1016/j.cnsns.2008.01.021
Ciobanu, R., Teodosiu, C., Almeida, C. M. V. B., Agostinho, F., & Giannetti, B. F. (2022). Sustainability Analysis of a Municipal Wastewater Treatment Plant through Emergy Evaluation. Sustainability, 14(11), 6461. https://doi.org/10.3390/su14116461
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van der Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260. https://doi.org/10.1038/387253a0
Dong, X., Ulgiati, S., Yan, M., Zhang, X., & Gao, W. (2008). Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China. Energy Policy, 36(10), 3882-3892. https://doi.org/10.1016/j.enpol.2008.04.027
Doroszewski, A., Jadczyszyn, J., Kozyra, J., Pudełko, R., Stuczyński, T., Mizak, K., Łopatka, A., Koza, P., Górski, T., & Wróblewska, E. (2012). Podstawy systemu monitoringu suszy rolniczej. Woda-Środowisko-Obszary Wiejskie, 12(2(38)), 77-91. https://www.itp.edu.pl/old/wydawnictwo/woda/zeszyt_38_2012/artykuly/Doroszewski%20i%20in.pdf (in Polish).
García-Herrero, L., Lavrnić, S., Guerrieri, V., Toscano, A., Milani, M., Cirelli, G. L., & Vittuari, M. (2022). Cost-benefit of green infrastructures for water management: A sustainability assessment of full-scale constructed wetlands in Northern and Southern Italy. Ecological Engineering, 185, 106797. https://doi.org/10.1016/j.ecoleng.2022.106797
Geber, U., & Björklund, J. (2002). The relationship between ecosystem services and purchased input in Swedish wastewater treatment systems - a case study. Ecological Engineering, 19(1), 97-117. https://doi.org/10.1016/S0925-8574(02)00079-4
Gersberg, R. M., Elkins, B. V., Lyon, S. R., & Goldman, C. R. (1986). Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research, 20(3), 363-368. https://doi.org/10.1016/0043-1354(86)90085-0
Grzebisz, W. (2008). Nawożenie roślin uprawnych, t. 1 i 2. Podstawy nawożenia. Nawozy i systemy nawożenia. Poznań: PWRiL. (in Polish).
Hau, J. L., & Baksh, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1–2), 215-225. https://doi.org/10.1016/j.ecolmodel.2003.12.016
Herath, I., & Vithanage, M. (2015). Phytoremediation in Constructed Wetlands. In A. Ansari, S. Gill, R. Gill, G. Lanza & L. Newman (Eds.), Phytoremediation (pp. 243-263). Cham: Springer. https://doi.org/10.1007/978-3-319-10969-5_21
Ho, L., & Goethals, P. M. L. (2020). Municipal wastewater treatment with pond technology: Historical review and future outlook. Ecological Engineering, 148, 105791. https://doi.org/10.1016/j.ecoleng.2020.105791
Jawecki, B., Marszałek, J., Pawęska, K., Sobota, M., & Malczewska, B. (2016). Construction and operation of domestic wastewater treatment plant under the relevant legislation – Part 1. Infrastructure and Ecology of Rural Areas, 2, 501-516. http://dx.medra.org/10.14597/infraeco.2016.2.2.035 (in Polish).
Kirkland, W. T. (1988). Preserving the Whangamarino Wetland: An Application of the Contingent Valuation Method [A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master]. Massey University. https://mro.massey.ac.nz/bitstream/handle/10179/5831/02_whole.pdf
Kuś, J. (2015). Glebowa materia organiczna – znaczenie, zawartość i bilansowanie. Studia i raporty IUNG-PIB, 45(19), 9-26. https://iung.pl/wp-content/uploads/2009/10/zesz45.pdf (in Polish).
Liu, L., Zhang, X., & Lyu, Y. (2022). Performance comparison of sewage treatment plants before and after their upgradation using emergy evaluation combined with economic analysis: A case from Southwest China. Ecological Modelling, 472, 110077. https://doi.org/10.1016/j.ecolmodel.2022.110077
Mander, Ü., Tournebize, J., Kasak, K., & Mitsch, W. J. (2014). Climate regulation by free water surface constructed wetlands for wastewater treatment and created riverine wetlands. Ecological Engineering, 72, 103-115. https://doi.org/10.1016/j.ecoleng.2013.05.004
Meier, L., P´erez, R., Az´ocar, L., Rivas, M., & Jeison, D. (2015). Photosynthetic CO2 uptake by microalgae: an attractive tool for biogas upgrading. Biomass and Bioenergy, 73, 102-109. https://doi.org/10.1016/j.biombioe.2014.10.032
Merlin, G., & Lissolo, T. (2010). Energy and Emergy Analysis to Evaluate Sustainability of Small Wastewater Treatment Plants: Application to a Constructed Wetland and a Sequencing Batch Reactor. Journal of Water Resource and Protection, 2, 997-1009. http://dx.doi.org/10.4236/jwarp.2010.212120
Ministry of Infrastructure. (2021). National Program for Municipal Wastewater Treatment (KPOŚK). https://www.gov.pl/web/infrastruktura (in Polish).
NEAD. (2024). National Environmental Accounting Database V2.0. http://www.emergy-nead.com/home
Odum, H. (1996). Environmental Accounting: Emergy and Environmental Decision Making. New York: John Wiley & Sons.
Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych. (Dz. U. z 2019 r., poz. 1311). https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (in Polish).
Saladini, F., Patrizi, N., Pulselli, F. M., Marchettini, N., & Bastianoni, S. (2016). Guidelines for emergy evaluation of first, second and third generation biofuels. Renewable and Sustainable Energy Reviews, 66, 221-227. https://doi.org/10.1016/j.rser.2016.07.073
Serdarevic, A., & Dzubur, A. (2019). Importance and Practice of Operation and Maintenance of Wastewater Treatment Plants. In S. Avdaković (Ed.), Advanced Technologies, Systems, and Applications III (pp. 121-127). Cham: Springer. https://doi.org/10.1007/978-3-030-02577-9_14
Shingare, R. P., Thawale, P. R., Raghunathan, K., Mishra, A., & Kumar, S. (2019). Constructed wetland for wastewater reuse: Role and efficiency in removing enteric pathogens. Journal of Environmental Management, 246, 444-461. https://doi.org/10.1016/j.jenvman.2019.05.157
Siracusa, G., & La Rosa, A. D. (2006). Design of a constructed wetland for wastewater treatment in a Sicilian town and environmental evaluation using the emergy analysis. Ecological Modelling, 197(3–4), 490-497. https://doi.org/10.1016/j.ecolmodel.2006.03.019
Skłodowski, P., & Bielska, A. (2009). Properties and fertility of soils in Poland - a basis for the formation of agro-environmental relations. Woda-Środowisko-Obszary Wiejskie, 9(4), 203-214. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATC-0002-0057 (in Polish).
Statistics Poland. (2024, November 30). Housing Economy and Municipal Structure in 2023. https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5492/13/18/1/gospodarka_mieszkaniowa_i_infrastruktura_komunalna_w_2023_r..pdf (in Polish).
Uchwała NR XXIX/214/2020 Rady Miejskiej w Prószkowie z dnia 18 grudnia 2020 r. w sprawie wyznaczenia obszaru i granic aglomeracji Prószków. (Dz. U. Woj. Opolskiego poz. 3658). https://duwo.opole.uw.gov.pl/WDU_O/2020/3658/akt.pdf (in Polish).
United States Environmentral Protection Agency. (2025). Small and Rural Wastewater Systems. https://www.epa.gov/small-and-rural-wastewater-systems/about-small-wastewater-systems
Vassallo, P., Paoli, Ch., & Fabiano, M. (2009). Emergy required for the complete treatment of municipal wastewater. Ecological Engineering, 35(5), 687-694. https://doi.org/10.1016/j.ecoleng.2008.11.002
Verlicchi, P., Al Aukidy, M., Galletti, A., Zambello, E., Zanni, G., & Masotti, L. (2012). A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis. Journal of Hydrology, 432-433, 127-136. https://doi.org/10.1016/j.jhydrol.2012.02.024
Wathugala, A. G., Suzuki, T., & Kurihara, Y. (1987). Removal of nitrogen, phosphorus and COD from waste water using sand filtration system with Phragmites Australis. Water Research, 21(10), 1217-1224. https://doi.org/10.1016/0043-1354(87)90173-4
Wiśniewska-Kadżajan, B. (2013). Household sewage – treatment plants as a way to solve the problems of wastewater management in rural areas. Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach, Seria: Administracja i Zarządzanie, 25(98), 247-257. https://czasopisma.uws.edu.pl/znadministracja/article/view/2210 (in Polish).
Wu, S., Austin, D., Liu, L., & Dong, R. (2011). Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. Ecological Engineering, 37(6), 948-954. https://doi.org/10.1016/j.ecoleng.2011.02.002
Zawadzka, J., Gallagher, E., Smith, H., & Corstanje, R. (2019). Ecosystem services from combined natural and engineered water and wastewater treatment systems: Going beyond water quality enhancement. Ecological Engineering, 142, 100006. https://doi.org/10.1016/j.ecoena.2019.100006
Zgłoszenie budowlane. (2004). Roślinno-stawowa oczyszczalnia ścieków dla budynku mieszkalnego w m. Szczedrzyk. Jednostka Projektowa: Instytut Ekologii Stosowanej. Maszewo (dokument prywatny właścicieli obiektu). (construction notification).
Zhang, J., & Ma, L. (2020). Environmental Sustainability Assessment of a New Sewage Treatment Plant in China Based on Infrastructure Construction and Operation Phases Emergy Analysis. Water, 12(2), 484. https://doi.org/10.3390/w12020484
Zhang, L. X., Ulgiati, S., Yang, Z. F., & Chen, B. (2011). Emergy evaluation and economic analysis of three wetland fish farming systems in Nansi Lake area, China. Journal of Environmental Management, 92(3), 683-694. https://doi.org/10.1016/j.jenvman.2010.10.005
Zhang, X., Deng, S., Wu, J., & Jiang, W. (2010). A sustainability analysis of a municipal sewage treatment ecosystem based on emergy. Ecological Engineering, 36(5), 685-696. https://doi.org/10.1016/j.ecoleng.2009.12.010
Zhao, Y., Ji, B., Liu, R., Ren, B., & Wei, T. (2020). Constructed treatment wetland: Glance of development and future perspectives. Water Cycle, 1, 104-112. https://doi.org/10.1016/j.watcyc.2020.07.002
Zhou, J. B., Jiang, M. M., Chen, B., & Chen, G. Q. (2009). Emergy evaluations for constructed wetland and conventional wastewater treatments. Communications in Nonlinear Science and Numerical Simulation, 14(4), 1781-1789. https://doi.org/10.1016/j.cnsns.2007.08.010

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Prawa autorskie (c) 2025 Czasopismo "Economics and Environment"
