Broiler production from the perspective of emergy analysis - environmental impact scenarios


broiler production
conventional farming
organic farming
emergy analysis
environmental impact

How to Cite

KUCZUK, A., & POSPOLITA, J. (2024). Broiler production from the perspective of emergy analysis - environmental impact scenarios. Economics and Environment, 88(1), 751.


Poultry meat consumption is a significant element in Poland's overall food consumption. Economic considerations mean that both nationally and globally, conventional intensive rearing dominates. Nevertheless, environmental and health aspects or the will to treat animals humanely make pro-environmental rearing systems increasingly common. The purpose of this article is an environmental analysis of an example farm engaged in intensive rearing of slaughtered poultry (so-called baseline production). For the analysed production, the following scenarios of changes were proposed: (a) conventional rearing based on the use of own fodder, and (b) organic rearing using free range and own organic fodder. An emergy approach was applied in this analysis. Comparison of different production systems using emergy analysis made it possible to show the scale of environmental resource commitment for baseline and scenario-based productions, and to determine the amount of renewable and non-renewable emergy consumed per unit of production. Through the use of selected emergy indicators, e.g.: Environmental Loading Ratio (ELR), Emergy Yield Ratio (EYR), the environmental impact for each case was determined. For the ecological system scenario, the need to change production parameters (stocking rate, maximum poultry house area, free range) was taken into account. The results of the emergy-based indicators showed that the baseline production places the greatest burden on the environment and is the least sustainable. The organic system is the opposite; however, due to production limitations and the lower production efficiency achieved, it may not be economically viable to orient a farm exclusively to the organic system. In an environmental assessment, the information obtained can provide valuable guidance to agricultural producers. They can help make informed decisions on natural resource management to achieve environmental security. The results are also important for political decision-makers in creating policies for more sustainable agricultural production. The results obtained are discussed, pointing out the importance of the analysis used mainly from an environmental point of view.


Abín, R., Laca, A., Laca, A., & Díaz, M. (2018). Environmental assesment of intensive egg production: A Spanish case study. Journal of Cleaner Production, 179, 160-168.

Ahamed, J. U., Saidur, R., Masjuki, H. H., Mekhilef, S., Ali, M. B., & Furqon, M. H. (2011). An application of energy and exergy analysis in agricultural sector of Malaysia. Energy Policy, 39(12), 7922-7929.

Amaral, L. P., Martins, N., & Gouveia, J. B. (2016). A review of emergy theory, its application and latest developments. Renewable and Sustainable Energy Reviews, 54, 882-888.

Bengtsson, J., & Seddon, J. (2013). Cradle to retailer or quick service restaurant gate life cycle assessment of chicken products in Australia. Journal of Cleaner Production, 41, 291-300.

Brandt-Wiliams, S. (2002). Handbook of Emergy Evaluation. A Compendium of Data for Emergy Computation. Issue in Series of Folios. Gainesvill: University of Florida.

Brown, M. T., & Ulgiati, S. (1997). Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecological Engineering, 9(1-2), 51-69.

Brown, M. T., Cohen, M. J., & Sweeney, S. (2009). Predicting national sustainability: The convergence of energetic, economic and environmental realities. Ecological Modelling, 220(23), 3424-3438.

Brown, M. T., Viglia, S., Love, D., Asche, F., Nussbaumer, E., Fry, J., Hilborn, R., & Neff, R. (2022). Quantifying the environmental support to wild catch Alaskan sockeye salmon and farmed Norwegian Atlantic Salmon: An emergy approach. Journal of Cleaner Production, 369, 133379.

Brown, M., & Ulgiati, S. (2004). Emergy Analysis and Environmental Accounting. Encyclopedia of Energy, 329-354.

Castellini, C., Bastianoni, S., Granai, C., Dal Bosco, A., & Brunetti, M. (2006). Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agriculture, Ecosystems & Environment, 114(2–4), 343-350.

Cavalett, O., & Ortega, E. (2008). Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. Journal of Cleaner Production, 17(8), 762-771.

Chen, G. Q., Jiang, M. M., Chen, B., Yang, Z. F., & Lin, C. (2006). Emergy analysis of Chinese agriculture. Agriculture, Ecosystems & Environment, 115(1-4), 161-173.

Cheng, H., Chen, Ch., Wu, S., Mirza, Z. A., & Liu, Z. (2017). Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. Journal of Cleaner Production, 144, 559-571.

Cleveland, C. J., Kaufmann, R. K., & Stern, D. I. (2000). Aggregation and the role of energy in the economy. Ecological Economics, 32(2), 301-317.

da Silva, V. P., van der Werf, H. M. G., Soares, S. R., & Corson, M. S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, 133, 222-231.

Elson, H. A. (2015). Poultry welfare in intensive and extensive production systems. World's Poultry Science Journal, 71(3),449-460.

Enayat, F. F., Ghanbari, S. A., Asgharipour, M. R., & Seyedabadi, E. (2023). Emergy ecological footprint analysis of Yaghooti grape production in the Sistan region of Iran. Ecological Modelling, 481, 110332.

European Commission. (2023). Poland ‒ CAP Strategic Plan.

Fan, J., Liu, C., Xie, J., Han, L., Zhang, C., Guo, D., Niu, J., Jin, H., & McConkey, B. G. (2022). Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Intermational Journal of Environmental Research and Public Health, 19(16), 9817.

FAO. (2023, September 15). Crops and livestock products.

Ghisellini, P., Zucaro, A., Viglia, S., & Ulgiati, S. (2014). Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis. Ecological Modelling, 271, 132-148.

Goglio, P., Smith, W. N., Grant, B. B., Desjardins, R. L., McConkey, B. G., Campbell, C. A., & Nemecek, T. (2015). Accounting for soil carbon changes in agricultural life cycle assessment (LCA): a review. Journal of Cleaner Production, 104, 23-39.

Gornowicz, E., Węglarzy, K., Lewko, L., & Pietrzak, M. (2015). Wyniki ekologicznego chowu kurcząt rzeźnych żywionych mieszanką paszową z dodatkiem ziół. Wiadomości Zootechniczne, LIII(3), 93-102. (in Polish).

Grout, L., Hales, S., French, N., & Baker, M. G. (2018). A Review of Methods for Assessing the Environmental Health Impacts of an Agricultural System. Intermational Journal of Environmental Research and Public Health, 15(7), 1315.

Gržinić, G., Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górny, T. L., Ławniczek-Wałczyk, A., Piechowicz, L., Olkowska, E., Potrykus, M., Tankiewicz, M., Krupka, M., Siebielec, G., & Wolska, L. (2023). Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment, 858(3), 160014.

Guillaume, A., Hubatová-Vacková, A., & Kočí, V. (2022). Environmental Impacts of Egg Production from a Life Cycle Perspective. Agriculture, 12(3), 355.

GUS. (2023a). Fizyczne rozmiary produkcji zwierzęcej w 2022 r.,2,9.html (in Polish).

GUS. (2023b). Produkcja upraw rolnych i ogrodniczych w 2022 roku.,9,21.html (in Polish).

He, Z., Zhang, Y., Liu, X., de Vries, W., Ros, G. H., Oenema, O., Xu, W., Hou, Y., Wang, H., & Zhang, F. (2023). Mitigation of nitrogen losses and greenhouse gas emissions in a more circular cropping-poultry production system. Resources, Conservation and Recycling, 189, 106739.

Hoang, V.-N., & Alauddin, M. (2011). Analysis of agricultural sustainability: A review of exergy methodologies and their application in OECD countries. International Journal of Energy Resources, 35(6), 459-476.

Holka, M., Kowalska, J., & Jakubowska, M. (2022). Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change? Agriculture, 12(9), 1383.

Houshyar, E., Wu, X. F., & Chen, G. Q. (2018). Sustainability of wheat and maize production in the warm climate of southwestern Iran: An emergy analysis. Journal of Cleaner Production, 172, 2246-2255.

Hu, Q. H., Zhang, L. X., & Wang, C. B. (2012). Emergy-based analysis of two chicken farming systems: a perception of organic production model in China. Procedia Environmental Sciences, 13, 445-454.

Jaiswal, B., & Agrawal, M. (2020). Carbon Footprints of Agriculture Sector. In S. Muthu (Ed.), Carbon Footprints. Environmental Footprints and Eco-design of Products and Processes (pp. 81-99). Singapore: Springer.

Jankowiak, J., & Miedziejko, E. (2009). Emergetyczna metoda oceny efektywności i zrównoważenie środowiskowego uprawy pszenicy. Journal of Agribusiness and Rural Development, 2(12), 75-84. (in Polish).

Kelly, E., Latruffe, L., Desjeux, Y., Ryan, M., Uthes, S., Diazabakana, A., Dillon, E., & Finn, J. (2018). Sustainability indicators for improved assessment of the effects of agricultural policy across the EU: Is FADN the answer? Ecological Indicators, 89, 903-911.

Kuczuk, A. (2016). Cost-, Cumulative Energy- and Emergy Aspects of Conventional and Organic Winter Wheat (Triticum aestivum L.) Cultivation. Journal of Agricultural Science, 8(4), 140-155.

Kuczuk, A., Pospolita, J., & Pieczonka, J. (2023). Emergy analysis of pond fish farming – a case study for a large fish farm in Poland. Economics and Environment, 85(2), 369-394.

Kuczuk, A., Pospolita, J., & Wacław, S. (2017). Energy and emergy analysis of mixed crop-livestock farming. International Conference Energy, Environment and Material Systems, 19, 02033.

Lei, K., Wang, Z., & Ton, S. (2008). Holistic emergy analysis of Macao. Ecological Engineering, 32(1), 30-43.

Leinonen, I., Williams, A. G., Wiseman, J., Guy, J., & Kyriazakis, I. (2012). Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poultry Science, 91(1), 8-25.

Lewandowska-Czarnecka, A., Buller, L. S., Nienartowicz, A., & Piernik, A. (2019). Energy and emergy analysis for assessing changes in Polish agriculture since the accession to the European Union. Ecological Modelling, 412, 108819.

Li, Y., Allacker, K., Feng, H., Heidari, M. D., & Pelletier, N. (2021). Net zero energy barns for industrial egg production: An effective sustainable intensification strategy? Journal of Cleaner Production, 316, 128014.

Liu, G. Y., Yang, Z. F., Chen, B., Zhang, Y., Zhang, L. X., Zhao, Y. W., & Jiang, M. M. ( 2009). Emergy-based urban ecosystem health assessment: A case study of Baotou, China. Communications in Nonlinear Science and Numerical Simulation, 14(3), 972-981.

Lomas, P. L., Álvarez, S., Rodríguez, M., & Montes, C. (2008). Environmental accounting as a management tool in the Mediterranean context: The Spanish economy during the last 20 years. Journal of Environmental Management, 88(2), 326-347.

Mansson, B. A., & McGlade, J. M. (1993). Ecology, thermodynamics and H.T. Odum’s conjectures. Oecologia, 93, 582-596.

Maysami, M. A., & Berg, W. (2021). Comparison of energy intensity of different food materials and their Energy. Food Research, 5(1), 168-174.

Mesas, A. E., Fernández-Rodríguez, R., Martínez-Vizcaíno, V., López-Gil, J. F., Fernández-Franc, O. S., Bizzozero-Peroni, B., & Garrido-Miguel, M. (2022). Organic Egg Consumption: A Systematic Review of Aspects Related to Human Health. Froniters in Nutrition, 9, 937959.

Morris, M. C. (2009). The Ethics and politics of animal Welfare in New Zealand: Broiler Chicken Production as a Case Study. Journal of Agricultural and Environmental Ethics, 22, 15-30.

Mostert, P. F., Bos, A. P., van Harn, J., van Horne, P., & de Jong, I. C. (2022). Environmental impacts of broiler production systems in the Netherlands. Wageningen: Wageningen University and Research.

Nacimento, R. A., Moreno, D. A. R., Toffolo, L. V., de Almeida, T. F. A., Rezende, V. T., Andreta, J. M. B., Mendes, C. M. I., Giannetti, B. F., & Gameiro, A. H. (2022). Sustainability assessment of commercial Brazilian organic and conventional broiler production systems under an Emergy analysis perspective. Journal of Cleaner Production, 359, 132050.

NEAD. (2023, August 20). The National Environmental Accounting Database.

Odum, H. T. (1996). Environmental Accounting. Emergy and Environmental Decision Making. New York: John Wiley & Sons.

Odum, H. T. (2007). Enviromernt, Power and Society For The Twenty-First Century. The Hierarchy of Energy. New York: Columbia University Press.

OECD. (2013). OECD Compendium of Agri-environmental Indicators.

Pandey, D., & Agrawal, M. (2014). Carbon Footprint Estimation in the Agriculture Sector. In S. Muthu (Ed.), Assessment of Carbon Footprint in Different Industrial Sectors, Volume 1 (pp. 25-47). Singapore: Springer.

Payraudeau, S., & van der Werf, H. M. G. (2005). Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystems & Environment, 107(1), 1-19.

Pelletier, N., Audsley, E., Brodt, S., Garnett, T., Henriksson, P., Kendall, A., Kramer, K. J., Murphy, D., Nemecek, T., & Troell, M. (2011). Energy Intensity of Agriculture and Food Systems. Annual Review of Environment and Resources, 36(1), 223-246.

Regulation of the Minister of Agriculture and Rural Development of 15 February 2010 on the requirements and procedure for keeping livestock species for which welfare standards have been laid down in European Union legislation. Journal of Laws No. 56, item 344. (in Polish).

Rizzo, G., Testa, R., Schifani, G., & Migliore, G. (2023). The Value of Organic plus. Analysing Consumers’ Preference for Additional Ethical Attributes of Organic food Products. Social Indicators Research, 1-20.

Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2018/848 z dnia 30 maja 2018 r. w sprawie produkcji ekologicznej i znakowania produktów ekologicznych i uchylające rozporządzenie Rady (WE) nr 834/2007, Pub. L. No. 32018R0848, 150 OJ L (2018). (in Polish).

Rozporządzenie wykonawcze Komisji (UE) 2020/464 z dnia 26 marca 2020 r. ustanawiające szczegółowe zasady dotyczące stosowania rozporządzenia Parlamentu Europejskiego i Rady (UE) 2018/848, w odniesieniu do dokumentów niezbędnych w celu uznania z mocą wsteczną okresów do celów konwersji, produkcji produktów ekologicznych oraz informacji, które mają być dostarczane przez państwa członkowskie, Pub. L. No. 32020R0464, 98 OJ L (2020). (in Polish).

Sciubba, E., & Ulgiati, S. (2005). Emergy and exergy analyses: Complementary methods or irreducible ideological options? Energy, 30(10), 1953-1988.

Smoluk-Sikorska, J. (2022). Consumer behaviours in the organic food market. Annals of the Polish association of agricultural and agribusiness economists, XXIV(3), 160-174.

Stanek, W. (2009). Metodyka oceny skutków ekologicznych w procesach cieplnych za pomocą analizy egzergetycznej. Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).

Su, Y., He, S., Wang, K., Shahtahmassebi, A. R., Zhang, L., Zhang, J., Zhang, M., & Gan, M. (2020). Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252, 119650.

Sun, Y., Wang, Y., Yang, B., Zheng, Z., Wang, Ch., Chen, B., Li, S., Ying, J., Liu, X., Chen, L., & Mu, W. (2021). Emergy evaluation of straw collection, transportation and storage system for power generation in China. Energy, 231, 120792.

Szargut, J. (2007). Egzergia. Poradnik obliczenia i stosowania. Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).

Ulgiati, S., Odum, H. T., & Bastianoni, S. (1994). Emergy use, environmental loading and sustainability an emergy analysis of Ital. Ecological Modelling, 73(3-4), 215-268.

Wang, Y., Cai, Y., Liu, G., Zhang, P., Li, B., Jia, Q., Huang, Y., & Shu, T. (2021). Evaluation of sustainable crop production from an ecological perspective based emergy analysis: A case of China's provinces. Journal of Cleaner Production, 313, 127912.

Xu, Y., Wang, T., Liu, W., Zhang, R., Hu, Y., Gao, W., & Chen, Y. (2023). Rural system sustainability evaluation based on emergy analysis: An empirical study of 321 villages in China. Journal of Cleaner Production, 389, 136088.

Zentner, R. P., Basnyat, P., Brandt, S. A., Thomas, A. G., Ulrich, D., Campbell, C. A., Nagy, C. N., Frick, B., Lemke, R., Malhi, S. S., & Fernandez, M. R. (2011). Effects of input management and crop diversity on non-renewable energy use efficiency of cropping systems in the Canadian Prairie. European Journal of Agronomy, 34(2), 113-123.

Zhai, X., Zhao, H., Guo, L., Finch, D. M., Huang, D., Liu, K., Tang, S., Yang, Y., Guo, J., Li, J., Xie, S., & Wang, K. (2018). The emergy of metabolism in the same ecosystem (maize) under different environmental conditions. Journal of Cleaner Production, 191, 233-239.

Zhang, B., Jin, P., Qiao, H., Hayat, T., Alsaedi, A., & Ahmad, B. (2019) Exergy analysis of Chinese agriculture. Ecological Indicators, 105, 279-291.

Zhang, L.-X., Hu, X.-H., & Wang, Ch.-B. (2013). Emergy evaluation of environmental sustainability of poultry farming that produces products with organic claims on the outskirts of mega-cities in China. Ecological Engineering, 54, 128-135.

Zhao, H., Zhai, X., Guo, L., Liu, K., Huang, D., Yang, Y., Li, J., Xie, S., Zhang, C., Tang, S., & Wang, K. (2019). Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. Journal of Cleaner Production, 235, 724-732.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment


Download data is not yet available.