Hydrogen as an energy source and as a form of energy storage
PDF

Keywords

hydrogen
RES
green energy
energy storage

How to Cite

Borowski, P. F. (2025). Hydrogen as an energy source and as a form of energy storage. Economics and Environment, 93(2), 941. https://doi.org/10.34659/eis.2025.93.2.941

Abstract

That paper explores the production and utilisation of clean hydrogen as a sustainable energy source, with a focus on the storage of hydrogen in underground caverns. The purpose is to assess the feasibility and benefits of using hydrogen as a clean energy alternative, particularly through large-scale storage solutions. The methodology involves a detailed review of current hydrogen production techniques, such as electrolysis using renewable energy, and the geological and technical aspects of cavern storage. The findings indicate that while hydrogen production is becoming increasingly efficient, cavern storage offers a viable solution for managing supply and demand, ensuring energy security. Practical implications include the potential for large-scale energy storage, enhancing grid stability, and supporting the transition to a low-carbon economy. Social implications involve reducing greenhouse gas emissions and promoting sustainable energy practices. The originality of the paper lies in its integration of hydrogen production and cavern storage, highlighting their combined potential for a sustainable energy future.

PDF

References

Acar, C., & Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835-849. https://doi.org/10.1016/j.jclepro.2019.02.046

Ahmad, A., Rambabu, K., Hasan, S. W., Show, P. L., & Banat, F. (2024). Biohydrogen production through dark fermentation: Recent trends and advances in transition to a circular bioeconomy. International Journal of Hydrogen Energy, 52, 335-357. https://doi.org/10.1016/j.ijhydene.2023.05.161

Alvarado-Flores, J. J., Alcaraz-Vera, J. V., Ávalos-Rodríguez, M. L., Guzmán-Mejía, E., Rutiaga-Quiñones, J. G., Pintor-Ibarra, L. F., & Guevara-Martínez, S. J. (2024). Thermochemical production of hydrogen from biomass: Pyrolysis and gasification. Energies, 17(2), 537. https://doi.org/10.3390/en17020537

Borowski, P. F. (2024). Innovative Solutions for the Future Development of the Energy Sector. European Research Studies Journal, 27(3), 297-307. https://doi.org/10.35808/ersj/3435

Borowski, P. F., & Karlikowska, B. (2023). Clean hydrogen is a challenge for enterprises in the era of low-emission and zero-emission economy. Energies, 16(3), 1171. https://doi.org/10.3390/en16031171

Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), 6793-6805. https://doi.org/10.20944/preprints201910.0187.v1

Czepło, F., & Borowski, P. F. (2024). Innovation solution in photovoltaic sector. Energies, 17(1), 265. https://doi.org/10.3390/en17010265

Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies, 16(3), 1141. https://doi.org/10.3390/en16031141

Domenighini, P., Costantino, F., Gentili, P. L., Donnadio, A., Nocchetti, M., Macchioni, A., ... & Cotana, F. (2024). Future perspectives in green hydrogen production by catalyzed sono-photolysis of water. Sustainable Energy & Fuels, 8(14), 3001-3014. https://doi.org/10.1039/D4SE00277F

Donaldson, A. (2023, April 18). Study finds salt cavern hydrogen storage feasible in Northern Ireland. https://www.power-technology.com/news/islandmagee-green-hydrogen-gas-storage-project-salt-caves/?cf-view

EWE. (2024, August 14). Wasserstoff-Speicher Rüdersdorf: EWE lagert erstmals Wasserstoff ein. https://www.ewe.com/de/media-center/pressemitteilungen/2023/10/wasserstoff-speicher-rdersdorf-ewe-lagert-erstmals-wasserstoff-ein-ewe-ag (in German).

Fletcher, A., Nguyen, H., Salmon, N., Spencer, N., Wild, P., & Bañares-Alcántara, R. (2024). Queensland green ammonia value chain: Decarbonising hard-to-abate sectors and the NEM. Brisbane, Australia.

Hassan, Q., Tabar, V. S., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2024). A review of green hydrogen production based on solar energy; techniques and methods. Energy Harvesting and Systems, 11(1), 20220134. https://doi.org/10.1515/ehs-2022-0134

IEA. (2024, August 16). Data and Statistics. https://www.iea.org/data-and-statistics

IRENA. (2024, August 10). Hydrogen. https://www.irena.org/Energy-Transition/Technology/Hydrogen

Lambert, M., Barnes, A., Imbault, O., Bhashyam, A., Tengler, M., Cavallera, C., & Romeo, G. (2024). State of the European Hydrogen Market Report. Oxford: The Oxford Institute for Energy Studies. https://www.oxfordenergy.org/wpcms/wp-content/uploads/2024/06/2024-State-of-the-European-Hydrogen-Market-Report.pdf

Minougou, J. D., Gholami, R., & Andersen, P. (2023). Underground hydrogen storage in caverns: Challenges of impure salt structures. Earth-Science Reviews, 247, 104599. https://doi.org/10.1016/j.earscirev.2023.104599

Muhammed, N. S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M. M., & Zaman, E. (2022). A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Reports, 8, 461-499. https://doi.org/10.1016/j.egyr.2021.12.002

Neumann, F., Zeyen, E., Victoria, M., & Brown, T. (2023). The potential role of a hydrogen network in Europe. Joule, 7(8), 1793-1817. https://doi.org/10.1016/j.joule.2023.06.016

Osman, A. I., Nasr, M., Eltaweil, A. S., Hosny, M., Farghali, M., Al-Fatesh, A. S., ... & Abd El-Monaem, E. M. (2024). Advances in hydrogen storage materials: harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions. International Journal of Hydrogen Energy, 67, 1270-1294. https://doi.org/10.1016/j.ijhydene.2024.03.223

Prigmore, S., Okon-Akan, O. A., Egharevba, I. P., Ogbaga, C. C., Okoye, P. U., Epelle, E., & Okolie, J. A. (2024). Cushion Gas Consideration for Underground Hydrogen Storage. Encyclopedia, 4(2), 847-863. https://doi.org/10.3390/encyclopedia4020054

PSEW. (2024, August 17). Zielony wodór. http://psew.pl/wp-content/uploads/2021/12/Raport-Zielony-Wodor-z-OZE-77MB.pdf (in Polish).

Rauch, R., Kiros, Y., Engvall, K., Kantarelis, E., Brito, P., Nobre, C., ... & Graefe, P. A. (2024). Hydrogen from waste gasification. Hydrogen, 5(1), 70-101. https://doi.org/10.3390/hydrogen5010006

Sauhats, A., Coban, H. H., Baltputnis, K., Broka, Z., Petrichenko, R., & Varfolomejeva, R. (2016). Optimal investment and operational planning of a storage power plant. International Journal of Hydrogen Energy, 41(29), 12443-12453. https://doi.org/10.1016/j.ijhydene.2016.03.078

Scottish. (2024, August 14). Offshore wind to green hydrogen: opportunity assessment. https://www.gov.scot/publications/scottish-offshore-wind-green-hydrogen-opportunity-assessment/pages/4/

SES Hydrogen. (2024, August 17). Elektroliza wody – produkcja zielonego wodoru. Przebieg procesu i obszary zastosowania. https://seshydrogen.com/elektroliza-wody-produkcja-zielonego-wodoru-przebieg-procesu-i-obszary-zastosowania/ (in Polish).

Tarkowski, R., & Uliasz-Misiak, B. (2022). Towards underground hydrogen storage: A review of barriers. Renewable and Sustainable Energy Reviews, 162, 112451. https://doi.org/10.1016/j.rser.2022.112451

Topkar, R., Patil, A., Magadum, P., Wadmare, S., Gurav, R., Hwang, S., ... & Jadhav, R. (2025). Biohydrogen Production: Harnessing Microbes for Clean Energy Generation. In S.K. Bhatia, P.S. Panesar & R. Gurav (Eds.), Microbial Biofuel (pp. 80-113). CRC Press. https://doi.org/10.1201/9781003585398

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Economics and Environment

Downloads

Download data is not yet available.