Abstrakt
That paper explores the production and utilisation of clean hydrogen as a sustainable energy source, with a focus on the storage of hydrogen in underground caverns. The purpose is to assess the feasibility and benefits of using hydrogen as a clean energy alternative, particularly through large-scale storage solutions. The methodology involves a detailed review of current hydrogen production techniques, such as electrolysis using renewable energy, and the geological and technical aspects of cavern storage. The findings indicate that while hydrogen production is becoming increasingly efficient, cavern storage offers a viable solution for managing supply and demand, ensuring energy security. Practical implications include the potential for large-scale energy storage, enhancing grid stability, and supporting the transition to a low-carbon economy. Social implications involve reducing greenhouse gas emissions and promoting sustainable energy practices. The originality of the paper lies in its integration of hydrogen production and cavern storage, highlighting their combined potential for a sustainable energy future.
Bibliografia
Acar, C., & Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835-849. https://doi.org/10.1016/j.jclepro.2019.02.046
Ahmad, A., Rambabu, K., Hasan, S. W., Show, P. L., & Banat, F. (2024). Biohydrogen production through dark fermentation: Recent trends and advances in transition to a circular bioeconomy. International Journal of Hydrogen Energy, 52, 335-357. https://doi.org/10.1016/j.ijhydene.2023.05.161
Alvarado-Flores, J. J., Alcaraz-Vera, J. V., Ávalos-Rodríguez, M. L., Guzmán-Mejía, E., Rutiaga-Quiñones, J. G., Pintor-Ibarra, L. F., & Guevara-Martínez, S. J. (2024). Thermochemical production of hydrogen from biomass: Pyrolysis and gasification. Energies, 17(2), 537. https://doi.org/10.3390/en17020537
Borowski, P. F. (2024). Innovative Solutions for the Future Development of the Energy Sector. European Research Studies Journal, 27(3), 297-307. https://doi.org/10.35808/ersj/3435
Borowski, P. F., & Karlikowska, B. (2023). Clean hydrogen is a challenge for enterprises in the era of low-emission and zero-emission economy. Energies, 16(3), 1171. https://doi.org/10.3390/en16031171
Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), 6793-6805. https://doi.org/10.20944/preprints201910.0187.v1
Czepło, F., & Borowski, P. F. (2024). Innovation solution in photovoltaic sector. Energies, 17(1), 265. https://doi.org/10.3390/en17010265
Dash, S. K., Chakraborty, S., & Elangovan, D. (2023). A brief review of hydrogen production methods and their challenges. Energies, 16(3), 1141. https://doi.org/10.3390/en16031141
Domenighini, P., Costantino, F., Gentili, P. L., Donnadio, A., Nocchetti, M., Macchioni, A., ... & Cotana, F. (2024). Future perspectives in green hydrogen production by catalyzed sono-photolysis of water. Sustainable Energy & Fuels, 8(14), 3001-3014. https://doi.org/10.1039/D4SE00277F
Donaldson, A. (2023, April 18). Study finds salt cavern hydrogen storage feasible in Northern Ireland. https://www.power-technology.com/news/islandmagee-green-hydrogen-gas-storage-project-salt-caves/?cf-view
EWE. (2024, August 14). Wasserstoff-Speicher Rüdersdorf: EWE lagert erstmals Wasserstoff ein. https://www.ewe.com/de/media-center/pressemitteilungen/2023/10/wasserstoff-speicher-rdersdorf-ewe-lagert-erstmals-wasserstoff-ein-ewe-ag (in German).
Fletcher, A., Nguyen, H., Salmon, N., Spencer, N., Wild, P., & Bañares-Alcántara, R. (2024). Queensland green ammonia value chain: Decarbonising hard-to-abate sectors and the NEM. Brisbane, Australia.
Hassan, Q., Tabar, V. S., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2024). A review of green hydrogen production based on solar energy; techniques and methods. Energy Harvesting and Systems, 11(1), 20220134. https://doi.org/10.1515/ehs-2022-0134
IEA. (2024, August 16). Data and Statistics. https://www.iea.org/data-and-statistics
IRENA. (2024, August 10). Hydrogen. https://www.irena.org/Energy-Transition/Technology/Hydrogen
Lambert, M., Barnes, A., Imbault, O., Bhashyam, A., Tengler, M., Cavallera, C., & Romeo, G. (2024). State of the European Hydrogen Market Report. Oxford: The Oxford Institute for Energy Studies. https://www.oxfordenergy.org/wpcms/wp-content/uploads/2024/06/2024-State-of-the-European-Hydrogen-Market-Report.pdf
Minougou, J. D., Gholami, R., & Andersen, P. (2023). Underground hydrogen storage in caverns: Challenges of impure salt structures. Earth-Science Reviews, 247, 104599. https://doi.org/10.1016/j.earscirev.2023.104599
Muhammed, N. S., Haq, B., Al Shehri, D., Al-Ahmed, A., Rahman, M. M., & Zaman, E. (2022). A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Reports, 8, 461-499. https://doi.org/10.1016/j.egyr.2021.12.002
Neumann, F., Zeyen, E., Victoria, M., & Brown, T. (2023). The potential role of a hydrogen network in Europe. Joule, 7(8), 1793-1817. https://doi.org/10.1016/j.joule.2023.06.016
Osman, A. I., Nasr, M., Eltaweil, A. S., Hosny, M., Farghali, M., Al-Fatesh, A. S., ... & Abd El-Monaem, E. M. (2024). Advances in hydrogen storage materials: harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions. International Journal of Hydrogen Energy, 67, 1270-1294. https://doi.org/10.1016/j.ijhydene.2024.03.223
Prigmore, S., Okon-Akan, O. A., Egharevba, I. P., Ogbaga, C. C., Okoye, P. U., Epelle, E., & Okolie, J. A. (2024). Cushion Gas Consideration for Underground Hydrogen Storage. Encyclopedia, 4(2), 847-863. https://doi.org/10.3390/encyclopedia4020054
PSEW. (2024, August 17). Zielony wodór. http://psew.pl/wp-content/uploads/2021/12/Raport-Zielony-Wodor-z-OZE-77MB.pdf (in Polish).
Rauch, R., Kiros, Y., Engvall, K., Kantarelis, E., Brito, P., Nobre, C., ... & Graefe, P. A. (2024). Hydrogen from waste gasification. Hydrogen, 5(1), 70-101. https://doi.org/10.3390/hydrogen5010006
Sauhats, A., Coban, H. H., Baltputnis, K., Broka, Z., Petrichenko, R., & Varfolomejeva, R. (2016). Optimal investment and operational planning of a storage power plant. International Journal of Hydrogen Energy, 41(29), 12443-12453. https://doi.org/10.1016/j.ijhydene.2016.03.078
Scottish. (2024, August 14). Offshore wind to green hydrogen: opportunity assessment. https://www.gov.scot/publications/scottish-offshore-wind-green-hydrogen-opportunity-assessment/pages/4/
SES Hydrogen. (2024, August 17). Elektroliza wody – produkcja zielonego wodoru. Przebieg procesu i obszary zastosowania. https://seshydrogen.com/elektroliza-wody-produkcja-zielonego-wodoru-przebieg-procesu-i-obszary-zastosowania/ (in Polish).
Tarkowski, R., & Uliasz-Misiak, B. (2022). Towards underground hydrogen storage: A review of barriers. Renewable and Sustainable Energy Reviews, 162, 112451. https://doi.org/10.1016/j.rser.2022.112451
Topkar, R., Patil, A., Magadum, P., Wadmare, S., Gurav, R., Hwang, S., ... & Jadhav, R. (2025). Biohydrogen Production: Harnessing Microbes for Clean Energy Generation. In S.K. Bhatia, P.S. Panesar & R. Gurav (Eds.), Microbial Biofuel (pp. 80-113). CRC Press. https://doi.org/10.1201/9781003585398

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Prawa autorskie (c) 2025 Czasopismo "Economics and Environment"