An automated approach for updating land cover change maps using satellite imagery
PDF

Keywords

application
land use
land cover
machine learning
satellite images

How to Cite

Bartold, M., Kluczek, M., & Dąbrowska-Zielińska, K. (2025). An automated approach for updating land cover change maps using satellite imagery. Economics and Environment, 92(1), 810. https://doi.org/10.34659/eis.2025.92.1.810

Abstract

Land cover change is a critical aspect of global environmental dynamics, influencing ecosystems, biodiversity, and climate change. This study presents an automated approach for updating land cover maps across Europe, combining Sentinel-1 and Sentinel-2 satellite imagery within the Copernicus framework. The application utilises machine learning algorithms to categorise land cover changes into classes such as no change, retained/reclassified, deurbanisation, afforestation, and urbanisation. Case studies in Poland, Greece, and Italy demonstrate the application's effectiveness, revealing the impact of motorway construction, afforestation efforts, and rapid urbanisation. Overall accuracy rates ranged from 68% to 95%, emphasising the reliability of the methodology. The open-source application, implemented in Python Jupyter and Voila, provides a user-friendly platform for researchers and stakeholders to monitor and analyse land cover changes, supporting informed decision-making for sustainable land management and conservation efforts. This study contributes valuable insights to understanding and addressing the environmental consequences of land cover changes in diverse geographical contexts.

PDF

References

Aleksandrowicz, S., Turlej, K., Lewiński, S., & Bochenek, Z. (2014). Change detection algorithm for the production of land cover change maps over the European Union countries. Remote Sensing, 6(7), 5976-5994. https://doi.org/10.3390/rs6075976

Balzter, H., Cole, B., Thiel, C., & Schmullius, C. (2015). Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sensing, 7(11), 14876-14898. https://doi.org/10.3390/rs71114876

Bartold, M. (2012). Monitoring of forest damages in Poland and Slovakia based on Terra. MODIS satellite images. Geoinformation Issues, 4(1(4)), 23-31. https://doi.org/10.34867/gi.2012.3

Bartold, M., & Kluczek, M. (2023). A machine learning approach for mapping chlorophyll fluorescence at inland wetlands. Remote Sensing, 15(9), 2392. https://doi.org/10.3390/rs15092392

Bielecka, E., & Jenerowicz, A. (2019). Intellectual structure of CORINE land cover research applications in Web of Science: A Europe-wide review. Remote Sensing, 11(17), 2017. https://doi.org/10.3390/rs11172017

Buettig, S., Lins, M., & Goihl, S. (2022). WaterMaskAnalyzer (WMA)—A user-friendly tool to analyze and visualize temporal dynamics of inland water body extents. Remote Sensing, 14(18), 4485. https://doi.org/10.3390/rs14184485

Chaves, E. D. M., Picoli, C. A. M., & Sanches, D. (2020). Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18), 3062. https://doi.org/10.3390/rs12183062

Chughtai, H. A., & Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22, 100482. https://doi.org/10.1016/j.rsase.2021.100482

Close, O., Benjamin, B., Petit, S., Fripiat, X., & Hallot, E. (2018). Use of Sentinel-2 and LUCAS database for the inventory of land use, land use change, and forestry in Wallonia, Belgium. Land, 7(4), 154. https://doi.org/10.3390/land7040154

Dabija, A., Kluczek, M., Zagajewski, B., Raczko, E., Kycko, M., Al-Sulttani, A. H., Tardà, A., Pineda, L., & Corbera, J. (2021). Comparison of support vector machines and random forests for CORINE land cover mapping. Remote Sensing, 13(4), 777. https://doi.org/10.3390/rs13040777

Dawid, W., & Bielecka, E. (2022). GIS-based land cover analysis and prediction based on open-source software and data. Quaestiones Geographicae, 41(3), 75-86. https://doi.org/10.2478/quageo-2022-0026

Dąbrowska-Zielinska, K., Bartold, M., & Gurdak, R. (2016). POLWET – System for new space-based products for wetlands under RAMSAR Convention. Geoinformation Issues, 8(1(8)), 25-35. https://doi.org/10.34867/gi.2016.3

De Fioravante, P., Luti, T., Cavalli, A., Giuliani, C., Dichicco, P., Marchetti, M., Chirici, G., Congedo, L., & Munafò, M. (2021). Multispectral Sentinel-2 and SAR Sentinel-1 integration for automatic land cover classification. Land, 10(6), 611. https://doi.org/10.3390/land10060611

Demirkan, D., Koz, A., & Duzgun, S. (2020). Hierarchical classification of Sentinel-2A images for land use and land cover mapping and its use for the CORINE system. Journal of Applied Remote Sensing, 14(2), 1-21. https://doi.org/10.1117/1.JRS.14.026524

Du, L., Dong, C., Kang, X., Qian, X., & Gu, L. (2023). Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020. Journal of Environmental Management, 332, 117149. https://doi.org/10.1016/j.jenvman.2022.117149

European Commission. (2018). Analysis of LULUCF actions in EU Member States as reported under Art. 10 of the LULUCF Decision – Final report. https://data.europa.eu/doi/10.2834/571578

FPCUP Climate. (2022). FPCUP - Development of Downstream Applications Supporting Sectoral Information System under Copernicus Climate Change Service [Application]. GitHub. https://github.com/Remote-Sensing-Centre/FPCUP-Climate

Ghamisi, P., Rasti, B., Yokoya, N., Wang, Q., Höfle, B., Bruzzone, L., Bovolo, F., Chi, M., Anders, K., Gloaguen, R., Atkinson, P. M., & Benediktsson, J. A. (2019). Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 7(1), 6-39. https://doi.org/10.1109/MGRS.2018.2890023

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Gómez, C., White, J. C., & Wulder, M. C. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55-72. https://doi.org/10.1016/j.isprsjprs.2016.03.008

Gudmann, A., Csikós, N., Szilassi, P., & Mucsi, L. (2020). Improvement in satellite image-based land cover classification with landscape metrics. Remote Sensing, 12(21), 3580. https://doi.org/10.3390/rs12213580

Häme, T., Sirro, L., Kilpi, J., Seitsonen, L., Andersson, K., & Melkas, T. (2020). A hierarchical clustering method for land cover change detection and identification. Remote Sensing, 12(11), 1751. https://doi.org/10.3390/rs12111751

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel-2 and deep learning. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 4704-4707. https://doi.org/10.1109/IGARSS47720.2021.9553499

Koala, H., Georgakopoulos, D., Jayaraman, P. P., & Yavari, A. (2021). Managing time-sensitive IoT applications via dynamic application task distribution and adaptation. Remote Sensing, 13(20), 4148. https://doi.org/10.3390/rs13204148

Leinenkugel, P., Deck, R., Huth, J., Ottinger, M., & Mack, B. (2019). The potential of open geodata for automated large-scale land use and land cover classification. Remote Sensing, 11(19), 2249. https://doi.org/10.3390/rs11192249

Lu, Y., Wu, P., Ma, X., & Li, X. (2019). Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata–Markov model. Environmental Monitoring and Assessment, 191, 68. https://doi.org/10.1007/s10661-019-7200-2

Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, M., Nowakowski, A., Wojtkowski, C., Krupiński, M., Krätzschmar, E., & Schauer, P. (2020). Automated production of a land cover/use map of Europe based on Sentinel-2 imagery. Remote Sensing, 12(21), 3523. https://doi.org/10.3390/rs12213523

Mikula, K., Šibíková, M., Ambroz, M., Kollár, M., Ožvat, A. A., Urbán, J., Jarolímek, I., & Šibík, J. (2021). NaturaSat—A software tool for identification, monitoring and evaluation of habitats by remote sensing techniques. Remote Sensing, 13(17), 3381. https://doi.org/10.3390/rs13173381

Mishra, P. K., Rai, A., & Rai, S. Ch. (2020). Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 133-143. https://doi.org/10.1016/j.ejrs.2019.02.001

Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14), 2291. https://doi.org/10.3390/rs12142291

Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018

Thinh, T. V., Duong, P., Kenlo, N., & Takeo, T. (2019). How does land use/land cover map’s accuracy depend on number of classification classes? SOLA, 15, 28-31. https://doi.org/10.2151/sola.2019-006

Topaloglu, R., Sertel, E., & Musaoglu, N. (2016). Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 1055-1059. https://doi.org/10.5194/isprs-archives-XLI-B8-1055-2016

Tsou, M. H., Guo, L., & Stow, D. (2003). Web-based remote sensing applications and Java tools for environmental monitoring. Online Journal of Space Communication, 2(3), 20. https://ohioopen.library.ohio.edu/spacejournal/vol2/iss3/20

Ullo, S. L., & Sinha, G. R. (2021). Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/rs13132585

Verhoeven, V. B., & Dedoussi, I. C. (2022). Annual satellite-based NDVI-derived land cover of Europe for 2001–2019. Journal of Environmental Management, 302(Part A), 113917. https://doi.org/10.1016/j.jenvman.2021.113917

Viana, C. M., Oliveira, S., Oliveira, S. C., & Rocha, J. (2019). Land use/land cover change detection and urban sprawl analysis. In H.R. Pourghasemi & C. Gokceoglu (Eds.), Spatial modeling in GIS and R for Earth and environmental sciences (pp. 621-651). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-815226-3.00029-6

Wang, Q., Guan, Q., Sun, Y., Du, Q., Xiao, X., Luo, H., Zhang, J., & Mi, J. (2023). Simulation of future land use/cover change (LUCC) in typical watersheds of arid regions under multiple scenarios. Journal of Environmental Management, 335, 117543. https://doi.org/10.1016/j.jenvman.2023.117543

Weinmann, M., & Weidner, U. (2018). Land-cover and land-use classification based on multitemporal Sentinel-2 data. Proceedings of the International Geoscience and Remote Sensing Symposium, Valencia, Spain, 4946-4949. https://doi.org/10.1109/IGARSS.2018.8519301

Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N. E., Xu, P., Ramoino, F., & Arino, O. (2022). ESA WorldCover 10 m 2021 v200 [Data set]. https://doi.org/10.5281/zenodo.7254221

Zeferino, B. L., Tavares de Souza, L. F., Hummel do Amaral, C., Filho, E. I. F., & Senna de Oliveira, T. (2020). Does environmental data increase the accuracy of land use and land cover classification? International Journal of Applied Earth Observation and Geoinformation, 91, 102128. https://doi.org/10.1016/j.jag.2020.102128

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Economics and Environment

Downloads

Download data is not yet available.