Abstrakt
Aligning farms with the European Green Deal necessitates precise identification and analysis of the interplay between primary economic factors and ecological dimensions. This study presents detailed research findings on the correlation between ecological indicators, CH4 and N2O emissions, and economic metrics within a regional framework. The research draws on data from farms participating in the European Agricultural Accounting Network (FADN) spanning 2010-2019. The resultant analysis underscores substantial correlations among the examined parameters. Regions characterised by heightened agricultural production intensity report elevated agricultural income. However, this is coupled with increased environmental impact and heightened greenhouse gas emissions, particularly among farms engaged in animal production. Mazowsze, Podlasie, Wielkopolska, and Slask exhibit notable progress in pro-environmental initiatives. In the Pomorze and Mazury regions, expenditures on fertilisation and plant protection remain close to the average, culminating in an efficient equilibrium of organic matter in the soil and minimal CH4 and N2O emissions per hectare.
Bibliografia
Barcaccia, G., D’Agostino, V., Zotti, A., & Cozzi, B. (2020). Impact of the SARS-CoV-2 on the Italian Agri-Food Sector: An Analysis of the Quarter of Pandemic Lockdown and Clues for a Socio-Economic and Territorial Restart. Sustainability, 12(14), 5651. https://doi.org/10.3390/su12145651
Belanger, V., Vanasse, A., Parent, D., Allard, G., & Pellerin, D. (2015). Delta: an integrated indicator – based self-assessment tool for the evaluation of dairy farms sustainability in Quebec Canada. Agroecology and Sustainable Food Systems, 39(9), 1022-1046. https://doi.org/10.1080/21683565.2015.1069775
Castoldi, N., & Bechini, L. (2010). Intergated sustainability assesment of cropping systems with agro-ecological and economic indicators in northern Italy. European Journal of Agronomy, 32(1), 59-72. https://doi.org/10.1016/j.eja.2009.02.003
Cortignani, R., & Dono, G. (2019). CAP’s environmental policy and land use in arable farms: An impacts assessment of greening practices changes in Italy. Science of The Total Environment, 647, 516-524. https://doi.org/10.1016/j.scitotenv.2018.07.443
Cortignani, R., Buttinelli, R., & Dono, G. (2022). Farm to Fork strategy and restrictions on the use of chemical inputs: Impacts in the various types of farming and territories of Italy. Science of The Total Environment, 810, 152259. https://doi.org/10.1016/j.scitotenv.2021.152259
Dick, J., Smith, R., Lilly, A., Moxey, A., Booth, J., Campbell, C., & Coulter, D. (2008). Calculating farm scale greenhouse gas emissions. https://www.academia.edu/25824366/Calculating_farm_scale_greenhouse_gas_emissions
Emmerling, Ch., Krein, A., & Junk, J. (2020). Meta-Analysis of Strategies to Reduce NH3 Emissions from Slurries in European Agriculture and Consequences from Greenhouse Gas Emissions. Agronomy-Basel, 10(11), 1633. https://doi.org/10.3390/agronomy10111633
Escribano, A. J., Gaspar, J. P., Mesias, F. J. D., Moreno, A. F. P., & Escribano, M. (2014). A sustainability assessment of organic and conventional beef cattle farms in agroforestry system: the case of the „dehesa” rangelands. ITEA – Informacion Tecnica Economica Agraria, 110(4), 343-367.
European Commission. (2020). Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of the Regions, Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System, Pub. L. No. 52020DC0381. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381
Harasim, A. (2013). Metoda oceny zrównoważonego rozwoju rolnictwa na poziomie gospodarstwa rolnego. Studia i Raporty, IUNG-PIB, 32(6), 25-75. https://iung.pl/wp-content/uploads/2009/10/zesz32.pdf (in Polish).
IPCC. (2006). Guidelines for National Greenhouse Gas Inventories. The Institute for Global Environmental Strategies (IGES) for the IPCC. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/
Khan, M. T., Ali, Q., & Ashfag, M. (2018). The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan. Renevable Energy, 118, 437-451. https://doi.org/10.1016/j.renene.2017.11.043
Kistowski, M., & Wiśniewski, P. (2020). Regionalization of needs to reduce GHG emission from agriculture in Poland. Geographia Polonica, 93(3), 361-376. https://doi.org/10.7163/GPol.0178
KOBiZE. (2021). Krajowy Raport Inwentaryzacyjny. Inwentaryzacja gazów cieplarnianych w Polsce dla lat 1988-2019. https://www.kobize.pl/uploads/materialy/materialy_do_pobrania/krajowa_inwentaryzacja_emisji/NIR_2021_raport_syntetyczny_PL.pdf (in Polish).
Koloszko-Chomentowska, Z., Sieczko, L., & Trochimczuk, R. (2021). Production Profile of Farms and Methane and Nitrous Oxide Emissions. Energies, 14(16), 4904. https://doi.org/10.3390/en14164904
Milne, A. E., Glendining, M. J., Lark, R. M., Perryman, S. A., Gordon, T., & Whitmore, A. P. (2015). Communicating the uncertainty in estimated greenhouse gas emissions from agriculture. Journal of Environmental Management, 160, 139-153. https://doi.org/10.1016/j.jenvman.2015.05.034
Morrison, D. (1990). Wielowymiarowa analiza statystyczna. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
Nowakowicz-Dębek, B., Wlazło, Ł., Szymula, A., Ossowski, M., Kasela, M., Chmielowiec-Korzeniowska, A., & Bis-Wencel, H. (2020). Estimating Methane Emissions from a Dairy Farm Using a Computer Program. Atmosphere, 11(8), 803. https://doi.org/10.3390/atmos11080803
Paracchini, M. L., Bulgheroni, C., Borreani, G., Tabacco, E., Banterle, A., Bertoni, D., Rossi, G., Parolo, G., Origgi, R., & De Paola, C. (2015). A diagnostics system to assess sustainability at a farm level: The SOSTARE model. Agricultural Systems, 133, 35-53. https://doi.org/10.1016/j.agsy.2014.10.004
Piekut, K., & Machnacki, M. (2011). Ocena ekologiczno-ekonomiczna gospodarstw rolnych na podstawie danych FADN. Woda-Środowisko-Obszary Wiejskie, 11(1), 203-219. (in Polish).
Polski FADN. (2022, June 20). Wyniki Standardowe z populacji badawczej. https://fadn.pl/publikacje/wyniki-standardowe-2/wyniki-standardowe-srednie-wazone (in Polish).
Prus, P. (2017). Sustainable farming production and its impact on the natural environment – case study based on a selected group of farms. Proceedings of the 8th International Scientific Conference on Rural Development—Bioeconomy Challenges, Akademija, Lithuania, 1280-1285. http://conf.rd.asu.lt/index.php/rd/article/view/554
Riccaboni, A., Neri, E., Trovarelli, F., & Pulselli, R. M. (2021). Sustainability-oriented research and innovation in „farm to fork” value chains. Current Opinion in Food Science, 42, 102-112. https://doi.org/10.1016/j.cofs.2021.04.006
Seber, W. G. A. (1984). Multivariate observations. New York: Wiley & Sons.
Sikora, A. (2020). European Green Deal – legal and financial challenges of the climate change. ERA Forum, 21, 681-697. https://doi.org/10.1007/s12027-020-00637-3
Sobczyński, T. (2008). Zmiany poziomu zrównoważonego gospodarstw rolnych UE w latach 1989-2005. Roczniki Nauk Rolniczych Seria G, 94(2), 106-114. (in Polish).
Solazzo, R., Donati, M., Tomasi, L., & Arfini, F. (2016). How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy. Science of the Total Environment, 573, 1115-1124. https://doi.org/10.1016/j.scitotenv.2016.08.066
Syp, A., & Osuch, D. (2017). Szacowanie emisji gazów cieplarnianych na podstawie danych FADN. Studia i Raporty IUNG-PIB, 52(6), 69-82. http://www.iung.pl/sir/zeszyt52_6.pdf (in Polish).
Taning, C. N. T., Nezzetti, B., Kleter, G., Smagghe, G., & Baraldi, E. (2021). Does RNAi-Based Technology Fit within EU Sustainability Goals? Trends in Biotechnology, 39(7), 644-647. https://doi.org/10.1016/j.tibtech.2020.11.008
Tongwane, M. I., & Moeletsi, M. E. (2018). A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems, 166, 124-134. https://doi.org/10.1016/j.agsy.2018.08.011
Vanham, D., & Leip, A. (2020). Sustainable food system policies need to address environmental pressures and impacts: The example of water use and water stress. Science of The Total Environment, 730, 139151. https://doi.org/10.1016/j.scitotenv.2020.139151
Wilk, W. (2007). Wykorzystanie danych statystycznych i wyników rachunkowości rolnej do oceny wpływu rolnictwa na środowisko w ujęciu makro- i mikroekonomicznym. Studia i Raport IUNG-PIB, 4, 59-67. https://doi.org/10.26114/sir.iung.2007.04.05 (in Polish).
Wiśniewski, P. (2018). Ocena wielkości emisji gazów cieplarnianych ze źródeł rolniczych na poziomie lokalnym w Polsce. Rocznik Ochrona Środowiska, 20, 1811-1829. (in Polish).
Wysocka-Czubaszek, A., Czubaszek, R., Roj-Rojewski, S., & Banaszuk, P. (2018). Methane and Nitrous Oxide Emissions from Agriculture on a Regional Scale. Journal of Ecological Engineering, 19(3), 206-217. https://doi.org/10.12911/22998993/86155
Zafeiriou, E., Mallidis, I., Galanopoulas, K., & Arabatzis, G. (2018). Greenhouse Gas Emissions and Economic Performance in EU Agriculture: An Empirical Study in a Non-Linear Framework. Sustainability, 10(11), 3837. https://doi.org/10.3390/su10113837
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Prawa autorskie (c) 2023 Czasopismo "Economics and Environment"