Hidden greens – ai's role in sustainability through opinion mining
PDF

Keywords

artificial intelligence
sustainability
opinion mining
sentiment analysis
Flan T5 XL

How to Cite

Frešová, Z. M. (2025). Hidden greens – ai’s role in sustainability through opinion mining. Economics and Environment, 93(2), 963. https://doi.org/10.34659/eis.2025.93.2.963

Abstract

This research explores the intersection of artificial intelligence (AI) and sustainability discourse, primarily focusing on public opinion expressed on the Reddit platform. Using unsupervised machine learning and large language models (LLMs), we conduct opinion mining and sentiment analysis on a diverse range of Reddit discussions related to sustainability, employing both fine-grained analysis and traditional statistical methods like bigram and frequency analysis. Our findings reveal key trends in public perception and evolving attitudes towards sustainability, highlighting areas of concern and potential opportunities for intervention. Additionally, we demonstrate how AI can significantly expedite model development, enabling rapid responses to shifts in public opinion. This agility is crucial for aligning sustainability initiatives with the values and concerns of diverse stakeholders. While acknowledging the limitations of Reddit as a representative sample of global opinion and the need for further validation of AI's capabilities in specific sustainability contexts, this study provides valuable insights into the dynamic relationship between AI and sustainability discourse. By understanding public sentiment and leveraging AI's potential for rapid adaptation and analysis, we can inform more effective strategies for addressing environmental challenges and promoting a sustainable future.

PDF

References

Bennagi, A., AlHousrya, O., Cotfas, D. T., & Cotfas, P. A. (2024). Comprehensive study of the artificial intelligence applied in renewable energy. Energy Strategy Reviews, 54, 101446. https://doi.org/10.1016/j.esr.2024.101446

Bracarense, N., Bawack, R. E., Wamba, S. F., & Carillo, K. D. (2022). Artificial Intelligence and sustainability: A bibliometric analysis and future research directions. Pacific Asia Journal of the Association for Information Systems, 14, 136-159. https://doi.org/10.17705/1pais.14209

Brett, E. I., Stevens, E. M., Wagener, T. L., Leavens, E. L. S., Morgan, T. L., Cotton, W. D., & Hébert, E. T. (2019). A content analysis of Juul discussions on social media: Using reddit to understand patterns and perceptions of juul use. Drug and Alcohol Dependence, 194, 358-362. https://doi.org/10.1016/j.drugalcdep.2018.10.014

Burnaev, E., Mironov, E., Shpilman, A., Mironenko, M., & Katalevsky, D. (2023). Practical AI cases for solving ESG challenges. Sustainability, 15(17), 12731. https://doi.org/10.3390/su151712731

Chen, L., Chen, Z., Zhang, Y., Liu, Y., Osman, A. I., Farghali, M., Hua, J., Al-Fatesh, A., Ihara, I., Rooney, D. W., & Yap, P.-S. (2023). Artificial Intelligence-based solutions for climate change: A Review. Environmental Chemistry Letters, 21(5), 2525-2557. https://doi.org/10.1007/s10311-023-01617-y

Chisom, O. N., Biu, P. W., Umoh, A. A., Obaedo, B. O., Adegbite, A. O., & Abatan, A. (2024). Reviewing the role of AI in environmental monitoring and conservation: A data-driven revolution for our planet. World Journal of Advanced Research and Reviews, 21(1), 161-171. https://doi.org/10.30574/wjarr.2024.21.1.2720

Das, D. (2022). Artificial Intelligence Of Things to Ensure Environmental Sustainability. https://www.researchgate.net/publication/357689397_Artificial_Intelligence_Of_Things_to_Ensure_Environmental_Sustainability

Fried, I. (2024, August 29). OpenAI says CHATGPT usage has doubled in the last year. Axios. https://www.axios.com/2024/08/29/openai-chatgpt-200-million-weekly-active-users

Galaz, V., Centeno, M. A., Callahan, P. W., Causevic, A., Patterson, T., Brass, I., Baum, S., Farber, D., Fischer, J., Garcia, D., McPhearson, T., Jimenez, D., King, B., Larcey, P., & Levy, K. (2023). Artificial intelligence, systemic risks, and sustainability. Technology in Society, 67, 101741. https://doi.org/10.1016/j.techsoc.2021.101741

Garske, B., Bau, A., & Ekardt, F. (2021). Digitalization and AI in European agriculture: A strategy for achieving climate and biodiversity targets? Sustainability, 13(9), 4652. https://doi.org/10.3390/su13094652

Gemma Team & Google DeepMind. (2024). Gemma 2: Improving Open Language Models at a Practical Size. https://arxiv.org/pdf/2408.00118

Gupta, J. (2024). AI’s Excessive Water Consumption Threatens to Drown Out Its Environmental Contributions. https://sdgs.un.org/sites/default/files/2024-05/Gupta%2C%20et%20al._AIs%20excessive%20water%20consumption.pdf

Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of CHATGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), 100089. https://doi.org/10.1016/j.tbench.2023.100089

Hamdan, A., Ibekwe, K. I., Ilojianya, V. I., Sonko, S., & Etukudoh, E. (2024). Ai in renewable energy: A review of Predictive Maintenance and energy optimization. International Journal of Science and Research Archive, 11(1), 718-729. https://doi.org/10.30574/ijsra.2024.11.1.0112

Hartmann, J., Heitmann, M., Siebert, C., & Schamp, C. (2023). More than a feeling: Accuracy and application of sentiment analysis. International Journal of Research in Marketing, 40(1), 75-87. https://doi.org/10.1016/j.ijresmar.2022.05.005

Heaven, W. D. (2023). Chatgpt is everywhere. here’s where it came from. MIT Technology Review. https://www.technologyreview.com/2023/02/08/1068068/chatgpt-is-everywhere-heres-where-it-came-from/

Jorzik, P., Klein, S. P., Kanbach, D. K., & Kraus, S. (2024). AI-Driven Business Model Innovation: A systematic review and research agenda. Journal of Business Research, 182, 114764. https://doi.org/10.1016/j.jbusres.2024.114764

Kertysova, K. (2018). Artificial Intelligence and Disinformation: How AI Changes the Way Disinformation is Produced, Disseminated, and Can Be Countered. Security and Human Rights, 29(1-4), 55-81. https://doi.org/10.1163/18750230-02901005

Khalid, M. (2024). Smart Grids and renewable energy systems: Perspectives and Grid Integration Challenges. Energy Strategy Reviews, 51, 101299. https://doi.org/10.1016/j.esr.2024.101299

Lee, S. U., Perera, H., Liu, Y., Xia, B., Lu, Q., Zhu, L., Cairns, J., & Nottage, M. (2024). Integrating ESG and AI: A comprehensive responsible AI assessment framework. ArXiv, 2408, 00965. https://doi.org/10.48550/arXiv.2408.00965

Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., & Roberts, A. (2023). The flan collection: Designing data and methods for effective instruction tuning. ArXiv, 2301, 13688. https://arxiv.org/abs/2301.13688

Mo, K., Liu, W., Xu, X., Yu, C., Zou, Y., & Xia, F. (2024). Fine-tuning gemma-7b for enhanced sentiment analysis of financial news headlines. 2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI), 40, 130-135. https://doi.org/10.1109/icetci61221.2024.10594605

Muluneh, M. G. (2021). Impact of climate change on Biodiversity and Food Security: A global perspective—a review article. Agriculture & Food Security, 10(1), 36. https://doi.org/10.1186/s40066-021-00318-5

Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D., Dangour, A. D., & Huybers, P. (2017). Climate change and global food systems: Potential impacts on food security and undernutrition. Annual Review of Public Health, 38(1), 259-277. https://doi.org/10.1146/annurev-publhealth-031816-044356

Naseem, U., Razzak, I., Khushi, M., Eklund, P. W., & Kim, J. (2021). Covidsenti: A large- scale benchmark Twitter data set for covid-19 sentiment analysis. IEEE Transactions on Computational Social Systems, 8(4), 1003-1015. https://doi.org/10.1109/tcss.2021.3051189

Pandian, P. (2021). Performance evaluation and comparison using Deep Learning techniques in sentiment analysis. Journal of Soft Computing Paradigm, 3(2), 123-134. https://irojournals.com/jscp/article/view/3/2/6

Proferes, N., Jones, N., Gilbert, S., Fiesler, C., & Zimmer, M. (2021). Studying reddit: A systematic overview of disciplines, approaches, methods, and Ethics. Social Media + Society, 7(2). https://doi.org/10.1177/20563051211019004

Reddit - the heart of the internet. (n.d.). https://www.reddit.com/

Reagle, J. (2022). Disguising Reddit sources and the efficacy of ethical research. Ethics and Information Technology, 24(3), 41. https://doi.org/10.1007/s10676-022-09663-w

Rustam, F., Khalid, M., Aslam, W., Rupapara, V., Mehmood, A., & Choi, G. S. (2021). A performance comparison of supervised machine learning models for covid-19 tweets sentiment analysis. PLOS ONE, 16(2), e0245909. https://doi.org/10.1371/journal.pone.0245909

Savela, N., Garcia, D., Pellert, M., & Oksanen, A. (2021). Emotional talk about robotic technologies on reddit: Sentiment analysis of life domains, motives, and temporal themes. New Media & Society, 26(2), 757-781. https://doi.org/10.1177/14614448211067259

Schoormann, T., Strobel, G., Möller, F., Petrik, D., & Zschech, P. (2023). Artificial Intelligence for Sustainability—a systematic review of Information Systems Literature. Communications of the Association for Information Systems, 52, 199-237. https://doi.org/10.17705/1cais.05209

Senadheera, S. S., Gregory, R., Rinklebe, J., Farrukh, M., Rhee, J. H., & Ok, Y. S. (2022). The development of research on environmental, social, and governance (ESG): A Bibliometric Analysis. Sustainable Environment, 8(1), 2125869. https://doi.org/10.1080/27658511.2022.2125869

Shivaprakash, K. N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., Jadeyegowda, M., & Kiesecker, J. M. (2022). Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability, 14(12), 7154. https://doi.org/10.3390/su14127154

Soutar, C., & Wand, A. P. (2022). Understanding the spectrum of anxiety responses to climate change: A systematic review of the qualitative literature. International Journal of Environmental Research and Public Health, 19(2), 990. https://doi.org/10.3390/ijerph19020990

Stahl, B. C. (2021). From computer ethics and the ethics of AI towards an ethics of digital ecosystems. AI and Ethics, 2(1), 65-77. https://doi.org/10.1007/s43681-021-00080-1

Tripathi, S., Bachmann, N., Brunner, M., Rizk, Z., & Jodlbauer, H. (2024). Assessing the current landscape of AI and sustainability literature: identifying key trends, addressing gaps and challenges. Journal of Big Data, 11, 65. https://doi.org/10.1186/s40537-024-00912-x

United Nations. (2015). The 17 goals. https://sdgs.un.org/goals

van der Ven, H., Corry, D., Elnur, R., Provost, V. J., & Syukron, M. (2024). Generative AI and social media may exacerbate the climate crisis. Global Environmental Politics, 24(2), 9-18. https://doi.org/10.1162/glep_a_00747

van Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics, 1(3), 213-218. https://doi.org/10.1007/s43681-021-00043-6

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of Artificial Intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233. https://doi.org/10.1038/s41467-019-14108-y

Wang T, Zuo Y, Manda T, Hwarari D, Yang L. Harnessing Artificial Intelligence, Machine Learning and Deep Learning for Sustainable Forestry Management and Conservation: Transformative Potential and Future Perspectives. Plants. 2025; 14(7):998. https://doi.org/10.3390/plants14070998

Wankhade, M., Rao, A. C., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780. https://doi.org/10.1007/s10462-022-10144-1

Wan Min, W. N. S., and N. Z. Zulkarnain. “Comparative Evaluation of Lexicons in Performing Sentiment Analysis”. Journal of Advanced Computing Technology and Application (JACTA), vol. 2, no. 1, May 2020, pp. 1-8, https://jacta.utem.edu.my/jacta/article/view/5207.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C., Gschwind, M., Gupta, A., Ott, M., Melnikov, A., Candido, S., Brooks, D., Chauhan, G., Lee, B., Lee, H.-H., & Hazelwood, K. (2021). Sustainable AI: Environmental implications, challenges and opportunities. ArXiv, 2111, 00364. https://doi.org/10.48550/arXiv.2111.00364

Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, Greenhouse Gases, and the global warming effect. Advances in Carbon Capture. In M.R. Rahimpour, M. Farsi & M.A. Makarem (Eds.), Advances in Carbon Capture. Methods, Technologies and Applications (pp. 3-28). Elsevier Inc. https://doi.org/10.1016/b978-0-12-819657-1.00001-3

Zhang, W., Deng, Y., Liu, B., Pan, S., & Bing, L. (2024). Sentiment analysis in the era of large language models: A reality check. Findings of the Association for Computational Linguistics: NAACL 2024, 3881-3906. https://doi.org/10.18653/v1/2024.findings-naacl.246

Zhang, X. (2015a). Fancyzhx/amazon_polarity datasets at hugging face. https://huggingface.co/datasets/fancyzhx/amazon_polarity

Zhang, X. (2015b). Fancyzhx/yelp_polarity datasets at hugging face. https://huggingface.co/datasets/fancyzhx/yelp_polarity

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Economics and Environment

Downloads

Download data is not yet available.