Abstract
We evaluate the impact of Krakow’s Anti-Smog Resolution, which was passed on January 15, 2016, and prohibits the use of coal and wood within the city. We use random forest, interrupted time series, and Bayesian structural time series models to assess air quality gains in terms of PM10, PM2.5, and benzo(a)pyrene concentrations, predicting pollution levels if the legislation had not been implemented. The results show significant reductions in pollutant concentrations: PM10 fell by 23% to 39%, PM2.5 by 23% to 36% and benzo(a)pyrene in PM10 by 39% to 41%, with the highest declines occurring during the heating season. These findings indicate the efficacy of Krakow's legislative strategy, offering evidence-based benchmarks for policymakers and public health officials in other cities considering similar residential heating restrictions to achieve measurable air quality improvements.
References
Adamkiewicz, Ł., Mucha, D., & Cygan, M. (2021). Ludzie czy pogoda. Co poprawia jakość powietrza? Analizy z wykorzystaniem modelu normalizującego stężenie zanieczyszczeń powietrza z wykorzystaniem danych meteorologicznych. https://www.portalsamorzadowy.pl/pliki-download/175372.html (in Polish).
Anh, V., Duc, H., & Azzi, M. (1997). Modeling anthropogenic trends in air quality data. Journal of the Air & Waste Management Association, 47(1), 66–71. https://doi.org/10.1080/10473289.1997.10464406
Barría-Sandoval, C., Ferreira, G., Lagos, B., & Montecino Bacigalupo, C. (2022). Assessing the effectiveness of quarantine measures during the COVID-19 pandemic in Chile using Bayesian structural time series models. Infectious Disease Modelling, 7(4), 625–636. https://doi.org/10.1016/j.idm.2022.08.007
Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348–355. https://doi.org/10.1093/ije/dyw098
Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S. M., & Williams, P. B. (2004). Health effects of air pollution. Journal of Allergy and Clinical Immunology, 114(5), 1116–1130. https://doi.org/10.1016/j.jaci.2004.08.030
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., & Scott, S. L. (2015). Inferring causal impact using Bayesian structural time-series models. Annals of Applied Statistics, 9(1), 247–274. https://doi.org/10.48550/arXiv.1506.00356
Cakaj, A., Lisiak-Zielińska, M., Khaniabadi, Y. O., & Sicard, P. (2023). Premature deaths related to urban air pollution in Poland. Atmospheric Environment, 301, 119723. https://doi.org/10.1016/j.atmosenv.2023.119723
Calderoni, L., Ferrara, M., Franco, A., & Maio, D. (2015). Indoor localization in a hospital environment using random forest classifiers. Expert Systems with Applications, 42(1), 125–134. https://doi.org/10.1016/j.eswa.2014.07.042
Cao, X., Liu, X., Hadiatullah, H., Xu, Y., Zhang, X., Cyrys, J., Zimmermann, R., & Adam, T. (2022). Investigation of COVID-19-related lockdowns on the air pollution changes in Augsburg in 2020, Germany. Atmospheric Pollution Research, 13(9), 101536. https://doi.org/10.1016/j.apr.2022.101536
Carnevale, C., Finzi, G., Pederzoli, A., Turrini, E., & Volta, M. (2018). An integrated data-driven/data assimilation approach for the forecast of PM10 levels in Northern Italy. In C. Mensink & G. Kallos (Eds.), Air Pollution Modeling and Its Application XXV (pp. 267–272). Springer. https://doi.org/10.1007/978-3-319-57645-9_36
Carrillo, P. E., Malik, A. S., & Yoo, Y. (2016). Driving restrictions that work? Quito’s "Pico y Placa" program. Canadian Journal of Economics/Revue Canadienne d'Économique, 49(4), 1536-1568. https://doi.org/10.1111/caje.12243
Chami, N., Li, Y., Weir, S., Wright, J. G., & Kantarevic, J. (2021). Effect of strict and soft policy interventions on laboratory diagnostic testing in Ontario, Canada: A Bayesian structural time series analysis. Health Policy, 125(2), 254–260. https://doi.org/10.1016/j.healthpol.2020.10.007
Chan, A. H. Y., Tomlin, A., Chan, E., Harrison, J., & Beyene, K. A. (2023). Effect of the COVID-19 pandemic on asthma exacerbations in New Zealand: An interrupted time series analysis. Journal of Allergy and Clinical Immunology: Global, 2(4), 100157. https://doi.org/10.1016/j.jacig.2023.100157
Chen, Y., Jin, G. Z., Kumar, N., & Shi, G. (2013). The promise of Beijing: Evaluating the impact of the 2008 Olympic Games on air quality. Journal of Environmental Economics and Management, 66(3), 424–443. https://doi.org/10.1016/j.jeem.2013.06.005
Davis, L. W. (2008). The effect of driving restrictions on air quality in Mexico City. Journal of Political Economy, 116(1), 38–81. https://doi.org/10.1086/529398
Davis, L. W. (2017). Saturday driving restrictions fail to improve air quality in Mexico City. Scientific Reports, 7, 41652. https://doi.org/10.1038/srep41652
de Vocht, F. (2016). Inferring the 1985–2014 impact of mobile phone use on selected brain cancer subtypes using Bayesian structural time series and synthetic controls. Environment International, 97, 100–107. https://doi.org/10.1016/j.envint.2016.10.019
European Environment Agency. (2024, June 10). European city air quality viewer. https://www.eea.europa.eu/themes/air/urban-air-quality/european-city-air-quality-viewer
Fenech, S., Aquilina, N. J., & Vella, R. (2021). COVID-19-related changes in NO₂ and O₃ concentrations and associated health effects in Malta. Frontiers in Sustainable Cities, 3, 631280. https://doi.org/10.3389/frsc.2021.631280
Feroze, N. (2020). Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian structural time series models. Chaos, Solitons & Fractals, 140, 110196. https://doi.org/10.1016/j.chaos.2020.110196
Filonchyk, M., Hurynovich, V., & Yan, H. (2021). Impact of COVID-19 lockdown on air quality in Poland, Eastern Europe. Environmental Research, 198, 110454. https://doi.org/10.1016/j.envres.2020.110454
Flaga-Maryańczyk, A., & Baran-Gurgul, K. (2022). The impact of local anti-smog resolution in Cracow (Poland) on the concentrations of PM₁₀ and BaP based on the results of measurements of the state environmental monitoring. Energies, 15(1), 56. https://doi.org/10.3390/en15010056
Gallego, F., Montero, J.-P., & Salas, C. (2013). The effect of transport policies on car use: Evidence from Latin American cities. Journal of Public Economics, 107, 47–62. https://doi.org/10.1016/j.jpubeco.2013.08.007
Gianacas, C., Liu, B., Kirk, M., Di Tanna, G. L., Belcher, J., Blogg, S., & Muscatello, D. J. (2023). Bayesian structural time series, an alternative to interrupted time series in the right circumstances. Journal of Clinical Epidemiology, 163, 102–110. https://doi.org/10.1016/j.jclinepi.2023.10.003
Główny Inspektorat Ochrony Środowiska. (2022). Stan środowiska w Polsce. https://www.gov.pl/attachment/8193fbd1-9302-4d30-a483-bde6c8f5564a (in Polish).
Główny Inspektorat Ochrony Środowiska. (2024, May). Database. https://powietrze.gios.gov.pl/pjp/archives (in Polish).
Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., & Hueglin, C. (2018). Random forest meteorological normalisation models for Swiss PM₁₀ trend analysis. Atmospheric Chemistry and Physics, 18(9), 6223–6239. https://doi.org/10.5194/acp-18-6223-2018
Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., & Carslaw, D. C. (2021). COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics, 21(5), 4169–4185. https://doi.org/10.5194/acp-21-4169-2021
Huang, H. N., Yang, Z., Wang, Y., Ou, C. Q., & Guan, Y. (2022). The use of generalized synthetic control method to evaluate air pollution control measures of G20 Hangzhou Summit. Frontiers in Public Health, 10, 1021177. https://doi.org/10.3389/fpubh.2022.1021177
Hudson, J., Fielding, S., & Ramsay, C. R. (2019). Methodology and reporting characteristics of studies using interrupted time series design in healthcare. BMC Medical Research Methodology, 19(1), 137. https://doi.org/10.1186/s12874-019-0777-x
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(3), 1–22. https://doi.org/10.18637/jss.v027.i03
Instytut Meteorologii i Gospodarki Wodnej. (2024, May). Database. https://danepubliczne.imgw.pl/ (in Polish).
IQAir. (2024, June 10). World's most polluted countries & regions. https://www.iqair.com/gb/world-most-polluted-countries
Kleczkowski, P., & Kotarba, K. (2020). Analiza zmian jakości powietrza w Krakowie oraz województwie małopolskim w latach 2012–2020. Krakowski Alarm Smogowy. https://krakowskialarmsmogowy.pl/wp-content/uploads/2021/02/Analiza-zmian-jakosci-powietrza-w-Krakowie-oraz-wojewodztwie-malopolskim-w-latach-2012-2020.pdf (in Polish).
Leung, C., Konya, L., & Su, L. (2024). Postpandemic immunity debt of influenza in the USA and England: An interrupted time series study. Public Health, 227, 239–242. https://doi.org/10.1016/j.puhe.2023.12.009
Liu, Z., & Kong, H. (2021). New evidence of the effect of Beijing’s driving restriction and other Olympic-year policies on air pollution. The B.E. Journal of Economic Analysis & Policy, 21(1), 241–272. https://doi.org/10.1515/bejeap-2019-0295
Luo, J., Aschebrook-Kilfoy, B., & Olopade, C. O. (2022). Maps of solid-fuel use and household air pollution. The Lancet Global Health, 10(10), 1361–1362. https://doi.org/10.1016/S2214-109X(22)00386-2
Menz, T. (2011). Do people habituate to air pollution? Evidence from international life satisfaction data. Ecological Economics, 71, 211–219. https://doi.org/10.1016/j.ecolecon.2011.09.012
Owen, V. S., Sinnadurai, S., Morrissey, J., Colaco, H., Wickson, P., Dyjur, D., Redlich, M., O’Neill, B., Zygun, D. A., Doig, C. J., Harris, J., Zuege, D. J., Stelfox, H. T., Faris, P. D., Fiest, K. M., & Niven, D. J. (2024). Multicentre implementation of a quality improvement initiative to reduce delirium in adult intensive care units: An interrupted time series analysis. Journal of Critical Care, 81, 154524. https://doi.org/10.1016/j.jcrc.2024.154524
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: Theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001
Powdthavee, N., & Oswald, A. J. (2020). Is there a link between air pollution and impaired memory? Evidence on 34,000 English citizens. Ecological Economics, 169, 106485. https://doi.org/10.1016/j.ecolecon.2019.106485
Pérez-Suárez, R., & López-Menéndez, A. J. (2015). Growing green? Forecasting CO₂ emissions with Environmental Kuznets Curves and Logistic Growth Models. Environmental Science & Policy, 54, 428–437. https://doi.org/10.1016/j.envsci.2015.07.015
Regulation of the Minister of the Environment of 13 September 2012 on the assessment of substance levels in the air. Journal of Laws 2012, item 1032.
Rzeczpospolita. (2024, April 15). Polski Alarm Smogowy ostrzega: ostatnie kopciuchy znikną z Polski dopiero za kilkadziesiąt lat. https://www.rp.pl/srodowisko/art866951-polski-alarm-smogowy-ostrzega-ostatnie-kopciuchy-znikna-z-2 (in Polish).
Saha, L., Kumar, A., Kumar, S., Korstad, J., Srivastava, S., & Bauddh, K. (2022). The impact of the COVID-19 lockdown on global air quality: A review. Environmental Sustainability, 5, 5–23. https://doi.org/10.1007/s42398-021-00213-6
Sanduijav, C., Ferreira, S., Filipski, M., & Hashida, Y. (2021). Air pollution and happiness: Evidence from the coldest capital in the world. Ecological Economics, 187, 107085. https://doi.org/10.1016/j.ecolecon.2021.107085
Schaffer, A. L., Dobbins, T. A., & Pearson, S. A. (2021). Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: A guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21, 58. https://doi.org/10.1186/s12874-021-01235-8
Scott, S. L., & Varian, H. R. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1–2), 4–23. https://doi.org/10.1504/IJMMNO.2014.059942
Takyi, P. O., & Bentum-Ennin, I. (2021). The impact of COVID-19 on stock market performance in Africa: A Bayesian structural time series approach. Journal of Economics and Business, 115, 105968. https://doi.org/10.1016/j.jeconbus.2020.105968
Tong, W., Hong, H., Fang, H., Xie, Q., & Perkins, R. (2003). Decision forest: Combining the predictions of multiple independent decision tree models. Journal of Chemical Information and Computer Sciences, 43(2), 525–531. https://doi.org/10.1021/ci020058s
Trinh, N. T., Nordeng, H. M., Bandoli, G., Eberhard-Gran, M., & Lupattelli, A. (2022). Antidepressant and mental health care utilization in pregnant women with depression and/or anxiety: An interrupted time-series analysis. Journal of Affective Disorders, 308, 458–465. https://doi.org/10.1016/j.jad.2022.04.101
Turner, S. L., Karahalios, A., Forbes, A. B., Taljaard, M., Grimshaw, J. M., & McKenzie, J. E. (2021). Comparison of six statistical methods for interrupted time series studies: Empirical evaluation of 190 published series. BMC Medical Research Methodology, 21(1), 134. https://doi.org/10.1186/s12874-021-01306-w
Viard, V. B., & Fu, S. (2015). The effect of Beijing’s driving restrictions on pollution and economic activity. Journal of Public Economics, 125, 98–115. https://doi.org/10.1016/j.jpubeco.2015.02.00
Wang, L., Li, S., & Hu, L. I. (2023). Looking for the missing link: Driving restriction, car trips, and air pollution in Beijing. Cities, 132, 104055. https://doi.org/10.1016/j.cities.2022.104055
World Health Organization. (2024, June 20). Air pollution. https://www.who.int/health-topics/air-pollution#tab=tab_1
Wu, K., Kang, P., Tie, X., Gu, S., Zhang, X., Wen, X., Kong, L., Wang, S., Chen, Y., Pan, W., & Wang, Z. (2019). Evolution and assessment of the atmospheric composition in Hangzhou and its surrounding areas during the G20 Summit. Aerosol and Air Quality Research, 19(12), 2757–2769. https://doi.org/10.4209/aaqr.2018.12.0481
Zaręba, M., & Danek, T. (2022). Analysis of air pollution migration during COVID-19 lockdown in Krakow, Poland. Aerosol and Air Quality Research, 22, 210275. https://doi.org/10.4209/aaqr.210275
Zeng, J., Guijarro, M., & Carrilero-Castillo, A. (2020). A regression discontinuity evaluation of the policy effects of environmental regulations. Economic Research-Ekonomska Istraživanja, 33(1), 2993–3016. https://doi.org/10.1080/1331677X.2019.1699437
Zeng, J., Zhao, R., & Dai, W. (2021). Extending synthetic control method for multiple treated units: An application to environmental intervention. Economic Research-Ekonomska Istraživanja, 34(1), 311–330. https://doi.org/10.1080/1331677X.2020.1782764
Zhang, J., Zhong, C., & Yi, M. (2016). Did Olympic Games improve air quality in Beijing? Based on the synthetic control method. Environmental Economics and Policy Studies, 18, 21–39. https://doi.org/10.1007/s10018-015-0109-2
Zhang, Y., & Fricker, J. D. (2021). Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model. Transport Policy, 103, 11–20. https://doi.org/10.1016/j.tranpol.2021.01.013

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Economics and Environment