Emergy analysis of pond fish farming – a case study for a large fish farm in Poland
PDF

Keywords

emergy account
environment
inland aquaculture
emergy indicators

How to Cite

Kuczuk, A., Pospolita, J., & Pieczonka, J. (2023). Emergy analysis of pond fish farming – a case study for a large fish farm in Poland . Economics and Environment, 85(2), 369-394. https://doi.org/10.34659/eis.2023.85.2.555

Abstract

The immediate goal of the article is an emergy analysis of fish production on an exemplary fish farm. Additionally, it was compared, in terms of environmental burden, with other exemplary agricultural productions. On the basis of the calculated emergy inflows, selected emergy indicators (ELR, EYR, REN) were calculated, showing the scale of use of renewable and non-renewable resources. The results show that the analysed fish production does not burden the environment and largely uses renewable resources, unlike other intensive agricultural productions. The ELR value was compared with its values for other exemplary agricultural production. In fish farming, this indicator is most often lower than 1. It is assumed that such activity does not burden the environment. Animal production requires the involvement of additional space for fodder production. Therefore the differences in the area necessary for the production of a food unit (GJ) of exemplary plant and animal products are also shown. Emergy analysis and its results can provide valuable information for decision-makers in terms of the direction of a given production.

PDF

References

Brandt-Williams, S. L. (2002). Handbook of Emergy Evaluation. A compendium of Data for Emergy Computation issued in Series of Folios. Folio 4 (2nd printing). Emergy Florida Agriculture. Ginesville: University of Florida.

Brown, M. T., & Ulgiati, S. (2004a). Emergy Analysis and Environmental Accounting. In C.J. Cleveland (Ed.), Encyclopedia of Energy (pp. 329-354). https://doi.org/10.1016/B0-12-176480-X/00242-4

Brown, M. T., & Ulgiati, S. (2004b). Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecological Modelling, 178(1-2), 201-213. https://doi.org/10.1016/j.ecolmodel.2004.03.002

Castellini, C., Bastianoni, S., Granai, C., Dal Bosco, A., & Brunetti, M. (2006). Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agriculture, Ecosystems & Environment, 114(2-4), 343-350. https://doi.org/10.1016/j.agee.2005.11.014

Cavalett, O., de Queiroz, J. F., & Ortega, E. (2006). Emergy assessment of integrated production systems of grains, pig and fish in small farms in South Brazil. Ecological Modelling, 193(3-4), 205-224. https://doi.org/10.1016/j.ecolmodel.2005.07.023

Chen, G. Q., Jiang, M. M., Chen, B., Yang, Z. F., & Lin, C. (2006). Emergy analysis of Chinese agriculture. Agriculture, Ecosystems & Environment, 115(1-4), 161-173. https://doi.org/10.1016/j.agee.2006.01.005

Ciotola, R. J., Lansing, S., & Martin, J. F. (2011). Emergy analysis of biogas production and electricity generation from small-scale agricultural digesters. Ecological Engineering, 37(11), 1681-1691. https://doi.org/10.1016/j.ecoleng.2011.06.031

da Silva Maciel, E. C., da Rocha, T. C., & de Almeida, R. L. (2022). An overview of family fish farming: social, politics and food security implications. Research, Society and Development, 11(1), 1-10. http://dx.doi.org/10.33448/rsd-v11i1.24602

David, L. H., Pinho, S. M., Keesman, K. J., & Garcia, F. (2021). Assessing the sustainability of tilapia farming in biofloc-based culture using emergy synthesis. Ecological Indicators, 131, 108186. https://doi.org/10.1016/j.ecolind.2021.108186

Diana, J. S., Egna, H. S., Chopin, T., Peterson, M. S., Cao, L., Pomeroy, R., Verdegem, M., Slack, W. T., Bondad-Reantaso, M. G., & Cabello, F. (2013). Responsible Aquaculture in 2050: Valuing Local Conditions and Human Innovations Will Be Key to Success. BioScience, 63(4), 255-262. https://doi.org/10.1525/bio.2013.63.4.5

EUMOFA. (2021). The UE Fish Market. The EU fish market highlights the EU in the world market supply consumption import – export landings in the EU aquaculture. Luxembourg: Publications Office of the European Union. https://www.eumofa.eu/documents/20178/477018/EN_The+EU+fish+market_2021.pdf

FAO. (2018). FAO’s work on family farming for the decade of Family Farming - preparing for the decade of family farming (2019-2028) to achieve the SDGs. Sustainable Development Goals. https://www.fao.org/3/CA1465EN/ca1465en.pdf

FAO. (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. https://doi.org/10.4060/cc0461en

Flaten, O., Koesling, M., Hansen, S., & Veidal, A. (2019). Links between profitability, nitrogen surplus, greenhouse gas emissions, and energy intensity on organic and conventional dairy farms. Agroecology and Sustainable Food Systems, 43(9), 957-983. https://doi.org/10.1080/21683565.2018.1544960

Google Maps (2022, August 04). Data on the location of breeding ponds (50°87'17.9”N 17°81'49.1"E). https://www.google.pl/maps/place/50%C2%B052'18.4%22N+17%C2%B048'53.7%22E/@50.8717934,17.8123351,17z/data=!3m1!4b1!4m4!3m3!8m2!3d50.87179!4d17.81491?entry=ttu

Guziur, J. (2008). Żywienie ryb. In J. Szarek, K.A. Skibniewska & J. Guziur (Eds.), Technologia produkcji rybackiej a jakość karpia (pp. 24-25). Olsztyn: ElSet. https://www.trafoon.org/sites/trafoon.org/files/info/news/37/technologia_produkcji_rybackiej_a_jakosc_karpia.pdf (in Polish).

Guziur, J. (2018). Pozaprodukcyjne i proekologiczne walory stawów karpiowych i małych zbiorników wodnych oraz ich unikatowe znaczenie w środowisku. Olsztyn: Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego. (in Polish).

Haden, A. C. (2003). Emergy Evaluation of Denmark and Danish Agriculture Assesing the Limits of Agricultural Systems to Power Society. Ekologiskt Lantbruk, 37. https://orgprints.org/id/eprint/2837/

Hau, J. L., & Bakshi, B. R. (2004). Promise and problems of emergy analysis. Ecological Modelling, 178(1-2), 215-225. https://doi.org/10.1016/j.ecolmodel.2003.12.016

Hernandez, R., Belton, B., Reardon, T., Hu, Ch., Zhang, X., & Ahmed, A. (2018). The “quiet revolution” in the aquaculture value chain in Bangladesh. Aquaculture, 493, 456-468. https://doi.org/10.1016/j.aquaculture.2017.06.006

Hill, M. J., Greaves, H. M., Sayer, C. D., Hassall, C., Milin, M., Milner, V. S., Marazzi, L., Hall, R., Harper, L. R., Thornhill, I., Walton, R., Biggs, J., Ewald, N., Law, A., Willby, N., White, J. C., Briers, R. A., Mathers, K. L., Jeffries, M. J., & Wood, P. J. (2021). Pond ecology and conservation: research priorities and knowledge gaps. Ecosphere, 12(12), e03853. https://doi.org/10.1002/ecs2.3853

Hryszko, K., Lirski, A., & Mytlewski, A. (2018). Światowy rynek ryb, owoców morza i innych organizmów wodnych. In K. Hryszko (Ed.), Sytuacja na światowym rynku ryb i jej wpływ na rozwój sektora rybnego w Polsce (pp.8-93). Warszawa: IERiGŻ-PIB. (in Polish).

Hu, Q. H., Zhang, L. X., & Wang, C. B. (2012). Emergy-based analysis of two chicken farming systems: a preception of organic production model in China. Procedia Environmental Sciences, 13, 445-454. https://doi.org/10.1016/j.proenv.2012.01.038

Jankowiak, J., & Miedziejko, E. (2009). Emergetyczna metoda oceny efektywności i zrównoważenia środowiskowego uprawy pszenicy. Journal of Agribussiness and Rural Development, 2(2), 75-84. (in Polish).

Januszko, O., & Kałuża, J. (2019). Znaczenie ryb i przetworów rybnych w żywieniu człowieka – analiza korzyści i zagrożeń. Kosmos – Problemy Nauk Biologicznych, 68(2), 269-281. https://doi.org/10.36921/kos.2019_2543 (in Polish).

Kim, Y., & Zhang, Q. (2018). Modeling of energy intensity in aquaculture: Future energy use of global aquaculture. SDRP Journal of Aquaculture, Fisheries & Fish Science, 2(1), 60-89. http://dx.doi.org/10.25177/JAFFS.2.1.3

Kuczuk, A. (2016a). Cumulative energy intensity and emergy account in cultivation of buckwheat (Fagopyrum Esculentum Moench). Journal of Research and Applications in Agricultural Engineering, 61(4), 6-14.

Kuczuk, A. (2016b). Cost-, Cumulative Energy- and Emergy Aspects of Conventional and Organic Winter Wheat (Triticum aestivum L.) Cultivation. Journal of Agricultural Science, 8(4), 140-155. http://dx.doi.org/10.5539/jas.v8n4p140

Kunachowicz, H., Przygoda, B., Nadolna, I., & Iwanow, K. (2020). Tabela składu i wartości odżywczej żywności. Warszawa: PZWL. (in Polish).

Lasner, T., Mytlewski, A., Nourry, M., Rakowski, M., & Oberle, M. (2020). Carp land: Economics of fish farms and the impact of region-marketing in the Aischgrund (DEU) and Barycz Valley (POL). Aquaculture, 519, 734731. https://doi.org/10.1016/j.aquaculture.2019.734731

Lirski, A., & Myszkowski, L. (2021a). Polska akwakultura w 2020 roku na podstawie analizy kwestionariuszy RRW-22. Część 1. Komunikaty Rybackie, 6(185), 2-8. (in Polish).

Lirski, A., & Myszkowski, L. (2021b, October 13-15). Obraz polskiej akwakultury w 2020 roku na podstawie badań statystycznych przy zastosowaniu kwestionariuszy RRW–22. [Paper presentation]. XLVI Szkolenie-Konferencja Hodowców Ryb Łososiowatych, Rumia. http://sprl.pl/userfiles/files/945%20-%201005_Obraz%20polskiej%20akwakultury%20w%202020%20roku%20na%20podstawie%20bada%C5%84%20statystycznych%20przy%20zastosowaniu%20kwestionariuszy%20RRW%20-%2022.%20Andrzej%20Lirski.pdf (in Polish).

Lirski, A., & Myszkowski, L. (2022). Polska akwakultura w 2020 roku na podstawie analizy kwestionariuszy RRW-22. Część 2. Komunikaty Rybackie, 1(186), 1-7. (in Polish).

Liu, S., Qingwen, M., Wenjun, J., Chuanjiang, L., & Jianzhong, Y. (2018). Integrated Emergy and Economic Evaluation of Huzhou Mulberry-Dyke and Fish-Pond Systems. Sustainability, 10(11), 3860. https://doi.org/10.3390/su10113860

Lomas, P. L., Cialani, C., & Ulgiati, S. (2006). Emergy Analysis of Nations: Lessons Learned from Historical Series. Proceedings of the 4th Biennial Conference on the Theory and Applications of the Emergy methodology, USA, 39, 39.1-39.18. https://www.researchgate.net/publication/261613185_Emergy_analysis_of_nations_Lessons_learned_from_historical_series#fullTextFileContent

Martin, J. F., Diemont, S. A. W., Powell, E., Stanton, M., & Levy-Tacher, S. (2006). Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management. Agriculture, Ecosystems & Environment, 115(1-4), 128-140. https://doi.org/10.1016/j.agee.2005.12.016

Mathé, S., & Rey-Valette, H. (2015). Local Knowledge of Pond Fish-Farming Ecosystem Services: Management Implications of Stakeholders’ Perceptions in Three Different Contexts (Brazil, France and Indonesia). Sustainability, 7(6), 7644-7666. https://doi.org/10.3390/su7067644

Mavraganis, T., Constantina, C., Kolygas, M., Vidalis, K., & Nathanailides, C. (2020). Environmental issues of Aquaculture development. Egyptian Journal of Aquatic Biology and Fisheries, 24(2), 441-450. https://doi.org/10.21608/ejabf.2020.85857

Miedziejko, E., & Jankowiak, J. (2010a). Energetyczna wycena usług środowiska w uprawie buraków. Ekonomia i Środowisko, 1(37), 189-200. (in Polish).

Miedziejko, E., & Jankowiak, J. (2010b). Emergetyczna analiza usług i obciążenia środowiska w uprawie rzepaku. Zeszyty Problemowe Postępów Nauk Rolniczych, 547, 237-248. (in Polish).

Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush S. R., Cao, L., Klinger, D. H., Little, C. D., Lubschenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591, 551-563. https://doi.org/10.1038/s41586-021-03308-6

NEAD. (2022, August 15). National Environmental Accounting Database V2.0. http://www.emergy-nead.com/home

Odum, H. T. (1996). Environmental accounting: Emergy and Environmental Decision Making. New York: John Wiley & Sons.

Pérez-Soba, M., Elbersen, B., Braat, L., Kempen, M., van der Wijngaart, R., Staritsky, I., Rega, C., & Paracchini, M. L. (2019). The emergy perspective: natural and anthropic energy flows in agricultural biomass production. Luxembourg: Publications Office. https://doi.org/10.2760/526985

Raftowicz, M., & Le Gallic, B. (2020). Inland aquaculture of carps in Poland: Between tradition and innovation. Aquaculture, 518, 734665. https://doi.org/10.1016/j.aquaculture.2019.734665

Sciubba, E., & Ulgiati, S. (2005). Emergy and exergy analyses: Complementary methods or irreducible ideological options? Energy, 30(10), 1953-1988. https://doi.org/10.1016/j.energy.2004.08.003

Silvano, R. A. M., Udvardy, S., Ceroni, M., & Farley, J. (2005). An ecological integrity assessment of a Brazilian Atlantic Forest watershed based on surveys of stream health and local farmers' perceptions: implications for management. Ecological Economics, 53(3), 69-385. https://doi.org/10.1016/j.ecolecon.2004.12.003

Stanek, W. (2009). Metodyka oceny skutków ekologicznych w procesach cieplnych za pomocą analizy egzergetycznej. Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).

Su, Y., He, S., Wang, K., Shahtahmassebi, A. R., Zhang, L., Zhang, J., Zhang, M., & Gan, M. (2020). Quantifying the sustainability of three types of agricultural production in China: An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 252, 119650. https://doi.org/10.1016/j.jclepro.2019.119650

Sun, J., Yuan, X., Liu, H., & Liu, G. (2021). Emergy and eco-exergy evaluation of wetland reconstruction based on ecological engineering approaches in the Gorges Reservoir, China. Ecological Indicators, 122, 107278. https://doi.org/10.1016/j.ecolind.2020.107278

Turkowski, K. (2021). Fish Farmers’ Perception of Ecosystem Services and Diversification of Carp Pond Aquaculture: A Case Study from Warmia and Mazury, Poland. Sustainability, 13(5), 2797. https://doi.org/10.3390/su13052797

Vassallo, P., Bastianoni, S., Beiso, I., Ridolfi, R., & Fabiano, M. (2007). Emergy analysis for the environmental sustainability of an inshore fish farming system. Ecological Indicators, 7(2), 290-298. https://doi.org/10.1016/j.ecolind.2006.02.003

Wang, Q., Xiao, H., Ma, Q., Yuan, X., Zuo, J., Zhang, J., Wang, S., & Wang, M. (2020). Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective. Sustainability, 12(367). https://doi.org/10.3390/su12010367

Wardal, W. J., Mazur, K. E., Roman, K., Roman, M., & Majchrzak, M. (2021). Assessment of Cumulative Energy Needs for Chosen Technologies of Cattle Feeding in Barns with Conventional (CFS) and Automated Feeding Systems (AFS). Energies, 14(24), 8584. https://doi.org/10.3390/en14248584

Wilfart, A., Prudhomme, J., Blancheton, J. P., & Aubin, J. (2013). LCA and emergy accounting of aquaculture systems: Towards ecological intensification. Journal of Environmental Management, 121, 96-109. https://doi.org/10.1016/j.jenvman.2013.01.031

Zhang, L. X., Hu, Q. H., & Wang, Ch. B. (2013). Emergy evaluation of environmental sustainability of poultry farming that produces products with organic claims on the outskirts of mega-cities in China. Ecological Engineering, 54, 128-135. https://doi.org/10.1016/j.ecoleng.2013.01.030

Zhang, L. X., Song, B., & Chen, B. (2012). Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China. Journal of Cleanar Production, 28, 33-44. https://doi.org/10.1016/j.jclepro.2011.10.042

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Economics and Environment

Downloads

Download data is not yet available.