Assessment of the recreational usability of stormwater management systems in urban areas – a case study of Wrocław
PDF

Keywords

stormwater management
retention systems
recreational index
green space
rainfall

How to Cite

Rynio, D., Adamiczka, H., Adamiczka, B., & Broma, T. (2025). Assessment of the recreational usability of stormwater management systems in urban areas – a case study of Wrocław. Economics and Environment, 93(2), 956. https://doi.org/10.34659/eis.2025.93.2.956

Abstract

The article presents the potential of building an effective system for sustainable stormwater management in urban areas that fulfils recreational functions, using the Nowe Żerniki estate in Wrocław (Poland) as a case study. The methodology includes desk research, cartographical analysis of the studied areas, case study, indicator analysis, and an individual in-depth interview. The study identifies a lack of a holistic approach to retention systems that integrate recreational use, leading to underutilized urban spaces. The limitations involve the complexity of assessing individual system components, which was addressed through simplified indices - RUI-E (Recreational usability index of the element) and RUI-S (Recreational usability index of the system). This simplification allows for intuitive use but opens possibilities for further development, including integrating more detailed parameters. Originality/Value lies in the ability to assess the attractiveness of an area using the proposed procedure for determining the recreational usability of stormwater management systems in urban areas. At the same time, it can serve as a tool to support urban design, making it applicable to designers and researchers in both new and existing urban developments. The Nowe Żerniki system’s recreational usability was moderate, with improvement potential.

PDF

References

Ando, A. W., Londoño Cadavid, C., Netusil, N. R., & Parthum, B. (2019). Willingness-to-volunteer and stability of preferences between cities: Estimating the benefits of stormwater management. Journal of Environmental Economics and Management, 99, 102274. https://doi.org/10.1016/j.jeem.2019.102274

Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29(2), 293-301. https://doi.org/10.1016/S0921-8009(99)00013-0

Boyd, E., & Juhola, S. (2015). Adaptive climate change governance for urban resilience. Urban Studies, 52(7), 1234-1264. https://doi.org/10.1177/0042098014527483

Campisano, A., Butler, D., Ward, S., Burns, M. J., Friedler, E., DeBusk, K., Fisher-Jeffes, L. N., Ghisi, E., Rahman, A., Furumai, H., & Han, M. (2017). Urban rainwater harvesting systems: Research, implementation, and future perspectives. Water Research, 115, 195-209. https://doi.org/10.1016/j.watres.2017.02.056

Chang, N.-B., Lu, J.-W., Chui, T. F. M., & Hartshorn, N. (2018). Global policy analysis of low-impact development for stormwater management in urban regions. Land Use Policy, 70, 368-383. https://doi.org/10.1016/j.landusepol.2017.11.024

Chathurika, A., Perera, S., Davies, P. J., & Graham, P. L. (2024). A global review of urban blue-green planning tools. Land Use Policy, 140, 107093. https://doi.org/10.1016/j.landusepol.2024.107093

Communication from the Commission A Sustainable Europe for a Better World: A European Union Strategy for Sustainable Development, Pub. L. No. 52001DC0264 (2001). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52001DC0264

Drexhage, J., & Murphy, D. (2010). Sustainable development: From Brundtland to Rio 2012. https://www.e-education.psu.edu/emsc302/sites/www.e-education.psu.edu.emsc302/files/Sustainable%20Development_from%20Brundtland%20to%20Rio%202012%20%281%29.pdf

Esraz-Ul-Zannat, M., Dedekorkut-Howes, A., & Morgan, E. A. (2024). A review of nature-based infrastructures and their effectiveness for urban flood risk mitigation. WIREs Climate Change, 15(5), e889. https://doi.org/10.1002/wcc.889

European Union. (2007). Leipzig Charter on Sustainable European Cities. https://territorialagenda.eu/wp-content/uploads/leipzig_charter_2007.pdf

GIS. (2025). Studium 2018. https://gis.um.wroc.pl/imap/?gpmap=Studium2018 (in Polish).

Goh, K. (2020). Flows in formation: The global-urban networks of climate change adaptation. Urban Studies, 57(11), 2222-2240. https://doi.org/10.1177/0042098018807306

Gomez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235-245. https://doi.org/10.1016/j.ecolecon.2012.08.019

Jiang, Y., Zevenbergen, C., & Fu, D. (2017). Understanding the challenges for the governance of China’s “sponge cities” initiative to sustainably manage urban stormwater and flooding. Natural Hazards, 89, 521-529. https://doi.org/10.1007/s11069-017-2977-1

Lee, K. E., Mokhtar, M., Mohd Hanafiah, M., Halim, A., & Badusah, J. (2016). Rainwater harvesting as an alternative water resource in Malaysia: Potential, policies, and development. Journal of Cleaner Production, 126, 218-222. https://doi.org/10.1016/j.jclepro.2016.03.060

Lejcuś, K., Burszta-Adamiak, E., & Sąbrowska, J. (2021). Katalog dobrych praktyk – Zasady zrównoważonego gospodarowania wodami opadowymi pochodzącymi z nawierzchni pasów drogowych. Wrocław: University of Life Sciences. (in Polish).

Londoño Cadavid, C. (2013). Using choice experiments to value preferences over stormwater management [Doctoral dissertation]. University of Illinois at Urbana-Champaign.

Mees, H. L. P., & Driessen, P. P. J. (2011). Adaptation to climate change in urban areas: Climate-greening, London, Rotterdam, and Toronto. Climate Law, 2(2), 251-280. https://www.researchgate.net/publication/228760305_Adaptation_to_climate_change_in_urban_areas_Climate-greening_London_Rotterdam_and_Toronto

Mentens, J., Raes, D., & Hermy, M. (2006). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century. Landscape and Urban Planning, 77(3), 217-226. https://doi.org/10.1016/j.landurbplan.2005.02.010

Pamukcu-Albers, P., Ugolini, F., La Rosa, D., Grădinaru, S. R., Azevedo, J. C., & Wu, J. (2021). Building green infrastructure to enhance urban resilience to climate change and pandemics. Landscape Ecology, 36, 665-673. https://doi.org/10.1007/s10980-021-01212-y

Pearce, D. W., Barbier, E., & Markandya, A. (1990). Sustainable Development: Economics and the Environment in the Third World. Edward Elgar.

Revi, A., Satterthwaite, D. E., Aragón-Durand, F., Corfee-Morlot, J., Kiunsi, R. B. R., Pelling, M., Roberts, D. C., & Solecki, W. (2014). Urban areas. In C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea & L.L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability (pp. 535-612). Cambridge University Press.

Rodrigues de Sa´ Silva, A. C., Mendonça Bimbato, A., Balestieri, J. A. P., & Vilanova, M. R. N. (2022). Exploring environmental, economic and social aspects of rainwater harvesting systems: A review. Sustainable Cities and Society, 76, 103475. https://doi.org/10.1016/j.scs.2021.103475

Sañudo-Fontaneda, L. A., & Robina-Ramírez, R. (2019). Bringing community perceptions into sustainable urban drainage systems: The experience of Extremadura, Spain. Land Use Policy, 89, 104251. https://doi.org/10.1016/j.landusepol.2019.104251

Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity, and vulnerability. Global Environmental Change, 16(3), 282-292. https://doi.org/10.1016/j.gloenvcha.2006.03.008

Tassi, R., Tassinari, L. C. S., Piccilli, D. G. A., & Persch, C. G. (2014). Telhado verde: Uma alternativa sustentável para a gestão das águas pluviais. Ambiente Construído, 14(1), 139-154. https://doi.org/10.1590/s1678-86212014000100012 (in Portugal).

United Nations. (1969). Problems of the human environment : report of the Secretary-General. https://digitallibrary.un.org/record/729455

United Nations. (1987). Report of the World Commission on Environment and Development. Our Common Future. http://www.un-documents.net/ocf-09.htm

United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. Resolution adopted by the General Assembly on 25 September 2015 (A/RES/70/1). http://sdgs.un.org/2030agenda

United Nations. (2024). Goal 11: Make cities inclusive, safe, resilient and sustainable. https://www.un.org/sustainabledevelopment/cities/

van den Berg, J. C. J. M., & Nijkamp, P. (1991). Operationalizing sustainable development: A dynamic ecological-economic model. Ecological Economics, 4(1), 11-33. https://doi.org/10.1016/0921-8009(91)90003-W

Veerkamp, C. J., Schipper, A. M., Hedlund, K., Lazarova, T., Nordin, A., & Hanson, H. I. (2021). A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosystem Services, 52, 101367. https://doi.org/10.1016/j.ecoser.2021.101367

Wong, G. K. L., & Jim, C. Y. (2015). Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landscape and Urban Planning, 143, 173-182. https://doi.org/10.1016/j.landurbplan.2015.07.001

Zhou, L., Shen, G., Li, C., Chen, T., Li, S., & Brown, R. (2021). Impacts of land covers on stormwater runoff and urban development: A land use and parcel-based regression approach. Land Use Policy, 103, 105280. https://doi.org/10.1016/j.landusepol.2021.105280

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Economics and Environment

Downloads

Download data is not yet available.