Abstract
The purpose of the paper is to investigate the potential of seabed polymetallic nodules in the Clarion-Clipperton Zone (CCZ) as a sustainable source of critical metals such as rare earth elements (REEs), cobalt, manganese, lithium and scandium. The methodology involves extensive geological surveys and sampling within the Interoceanmetal Joint Organization (IOM) exploration area, followed by the analysis of the mineral composition, metal content, and assessment of metallurgical processing possibilities. The importance of critical metals is discussed on the basis of literature analysis. The research confirms that polymetallic nodules in the CCZ are rich in critical and strategic metals with economic potential. Further research is needed to assess the environmental impacts and economic feasibility of deep-sea mining. Practical implications are that the development of deep-sea mining could be a viable alternative to traditional land-based mining, potentially reducing Europe’s reliance on imported critical metals. Social implications of the project are in the sustainable supply of critical metals for advancing green technologies, combating climate change and the goals of the society energy transition. The study provides an evaluation of the potential of polymetallic nodules as a strategic resource, and contributes to the discourse on sustainable mining and resource security in the context of global supply challenges.
References
Abramowski, T., & Kotliński, R. A. (2011). Współczesne wyzwania eksploatacji oceanicznych kopalin polimetalicznych. Górnictwo i Geoinżynieria, 35, 41-61. https://www.researchgate.net/publication/371006004_WSPOLCZESNE_WYZWANIA_EKSPLOATACJI_OCEANICZNYCH_KOPALIN_POLIMETALICZNYCH (in Polish).
Abramowski, T., Urbanek, M., & Baláž, P. (2021). Structural economic Assessment of Polymetallic nodules Mining Project with Updates to Present Market Conditions. Minerals, 11(3), 311. https://doi.org/10.3390/min11030311
Church, C., & Wuennenberg, L. (2019). Sustainability and Second Life: The case for cobalt and lithium recycling. International Institute for Sustainable Development. https://www.iisd.org/system/files/publications/sustainability-second-life-cobalt-lithium-recycling.pdf
Cobalt Institute. (2024). Cobalt Market Report 2023. www.cobaltinstitute.org
Cunningham, A. (2024). Assessing the feasibility of deep-seabed mining of polymetallic nodules in the Area of seabed and ocean floor beyond the limits of national jurisdiction, as a method of alleviating supply-side issues for cobalt to US markets. Mineral Economics, 37, 207-226. https://doi.org/10.1007/s13563-022-00348-w
Depowski, S., Kotliński, R., Rühle, E., & Szamałek, K. (1998). Surowce mineralne mórz i oceanów. Warszawa: Scholar. (in Polish).
European Commission. (2020). Study on the EU's list of critical raw materials – Final report. https://data.europa.eu/doi/10.2873/11619
European Commission. (2023). Study on the critical raw materials for the EU 2023 – Final report. https://data.europa.eu/doi/10.2873/725585
Halbach, P., & Jahn, A. (2016). Concentrations and metal potentials of REEs in marine polymetallic nodule and Co-rich crust deposits. Proceedings of the Deep sea mining value chain: organization, technology and development. West Pomerania Deep Sea Mining Conference, IOM, Szczecin, Poland, 119-131.
Halbach, P., Scherhag, I. C., Hebisch, U., & Marchig, V. (1981). Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean. Mineral Deposita, 16, 59-84. https://doi.org/10.1007/BF00206455
Hein, J. R., & Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules. In H.D. Holland & K.K. Turekian (Eds.). Geochemistry of Mineral Deposits. Treatise on Geochemistry (pp. 273-291). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01111-6
IMnI Annual Review 2022. (2023). International Manganese Institute. www.manganese.org
International Energy Agency. (2024). Global Critical Minerals Outlook 2024. www.iea.org/reports/global-critical-minerals-outlook-2024
International Seabed Authority. (2010). A Geological Model of Polymetallic Nodule Deposits in the Clarion Clipperton Fracture Zone. Technical Study No. 6. Kingston: International Seabed Authority. https://www.isa.org.jm/wp-content/uploads/2022/06/tstudy6.pdf
International Seabed Authority. (2015). Reporting Standard of the International Seabed Authority for Mineral Exploration Results Assessments, Mineral Resources and Mineral Reserves. http://www.isa.org.jm/mining_code/isba-21-ltc-15
Kotliński, R. (1999). Metallogenesis of the World’s ocean against the background of oceanic crust evolution. Polish Geological Institute Special Papers, 4, 1-70. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUS6-0026-0020/c/Kotlinski_Matallogenesis_PGISP_4_1999.pdf
Kotliński, R. A., & Stoyanova, V. (2007). Identification of Factors and Conditions Potentially Responsible for the Buried Nodules Occurrence in the Eastern Clarion-Clipperton Zone (NE Pacific). Proceedings of The 7th ISOPE Ocean Mining Symposium, Lisbon, Portugal, 1-6. https://onepetro.org/ISOPEOMS/proceedings-abstract/OMS07/All-OMS07/ISOPE-M-07-033/25198
Kuhn, T., & Rühlemann, C. (2021). Exploration of Polymetallic Nodules and Resource Assessment: A Case Study from the German Contract Area in the Clarion-Clipperton Zone of the Tropical Northeast Pacific. Minerals, 11(6), 618. https://doi.org/10.3390/min11060618
Kuhn, T., Wegorzewski, A., Rühlemann, C., & Vink, A. (2017). Composition, Formation, and Occurrence of Polymetallic Nodules. In R. Sharma (Ed.), DeepSea Mining (pp. 23-63). Springer. https://doi.org/10.1007/978-3-319-52557-0_2
Madureira, P., Brekke, H., Cherkashov, G., & Rovere, M. (2016). Exploration of polymetallic nodules in the Area: Reporting practices, data management and transparency. Marine Policy, 70, 101-107. https://doi.org/10.1016/j.marpol.2016.04.051
Mucha, J., & Wasilewska-Błaszczyk, M. (2020). Estimation Accuracy and Classification of Polymetallic Nodule Resources Based on Classical Sampling Supported by Seafloor Photography (Pacific Ocean, Clarion - Clipperton Fracture Zone, IOM Area). Minerals, 10(3), 263. https://doi.org/10.3390/min10030263
Park, K.-H., Nam, CH.-W., Kim, H.-H., & Park, J. T. (2015). Leaching of Rare Earth Metals from Manganese Nodule by HCl Solution. Korean Journal of Metals and Materials, 53(9), 637-641. https://www.researchgate.net/publication/283751479_Leaching_of_Rare_Earth_Metals_from_Manganese_Nodule_by_HCl_Solution
Patil, A. B., Paetzel, V., Struis, R. P. W. J., & Ludwig, C. (2022). Separation and Recycling Potential of Rare Earth Elements from Energy Systems: Feed and Economic Viability Review. Separations, 9(3), 56. https://doi.org/10.3390/separations9030056
Regulation (EU) 2024/1252 of the European Parliament and of The Council of 11 April 2024 establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020, Pub. L. No. 32024R1252, 1252 OJ L (2024). https://eur-lex.europa.eu/eli/reg/2024/1252/oj/eng
Sakellariadou, F., Gonzalez, F. J., Hein, J. R., Rincón Tomás, B., Arvanitidis, N., & Kuhn, T. (2022). Seabed mining and blue growth: exploring the potential of marine mineral deposits as a sustainable source of rare earth elements (MaREEs) (IUPAC Technical Report). Pure and Applied Chemistry, 94(3), 329-351. https://doi.org/10.1515/pac-2021-0325
Scandium International Mining Corp. (2024). https://scandiummining.com
Torres De Matos, C., Ciacci, L., Godoy León, F., Dewulf, J., Lundhaug, M., Müller, D. B., Georgitzikis, K., Wittmer, D., & Mathieux, F. (2020). Material system analysis of five battery-related raw materials : cobalt, lithium, manganese, natural graphite, nickel. https://data.europa.eu/doi/10.2760/519827
USGS. (2023). Mineral Commodity Summaries 2023. https://doi.org/10.3133/mcs2023
Vu, H., Kristianová, E., Adrysheva, A., & Dvořák, P. (2018). Alternative uses of deep sea nodules aiming for extraction of selected critical metals contained directly in nodules, extraction of critical metals from industrial wastewater and treating industrial nodule leaching solutions in order to prepare a pre-feasibility study. IOM Internal Report. Prague: University of Chemistry and Technology.
Vu, N. H., Kristianová, E., Dvořák, P., Abramowski, T., Dreiseitl, I., & Adrysheva, A. (2019). Modified Leach Residues from Processing Deep-Sea Nodules as Effective Heavy Metals Adsorbents. Metals, 9(4), 472. https://doi.org/10.3390/met9040472
Wasilewska-Błaszczyk, M., & Mucha, J. (2023). Regression methods in predicting the abundance of nodules from seafloor images – a case study from the IOM area, Pacific Ocean. Mineral Resources Management, 39(2), 5-36. https://doi.org/10.24425/gsm.2023.145886
Zeng, A., Chen, W., Rasmussen, K. D., Zhu, X., Lundhaug, M., Müller, D. B., Tan, J., Keiding, J. K., Liu, L., Dai, T., Wang, A., & Liu, G. (2022). Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nature Communications, 13, 1341. https://doi.org/10.1038/s41467-022-29022-z

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Economics and Environment