Electro-coagulation technique using iron [Fe] and aluminium [Al] for microplastics removal from fashion industry wastewater, Thailand
PDF

Keywords

Best-Available Technology
Electro-coagulation
Microplastics
Wastewater Treatment Plant
Removal Efficiency

How to Cite

Rasheed, Z. (2024). Electro-coagulation technique using iron [Fe] and aluminium [Al] for microplastics removal from fashion industry wastewater, Thailand. Economics and Environment, 90(3), 826. https://doi.org/10.34659/eis.2024.90.3.826

Abstract

The textile sector is considered as the 3rd largest source of water pollution and land degradation during 2020. of the world’s water pollution is linked with textile production and utilisation. Textile washing releases 14 million tons of microplastics, according to European Environmental Agency estimates. Wastewater Treatment Plant [WWTP] has declared everyday normal releases of more than 4 million MP particles because of its tiny size (<5mm) and low thickness (<1.2 g/cm3). Electrochemistry for the removal of tinny pollutants is recognised as an efficient treatment mechanism. The main aim of this research paper is to identify the efficiency of electro-coagulation technology using Fe and Al as anode and cathode in microplastic removal from Thailand’s textile industries. Results show the maximum 100% microplastic removal efficiency with pH 10 at a current density of 30 A/m2 within 60 minutes of the current supply. This paper helps to understand the role of electro-coagulation in Thailand textile wastewater plants and adopt the best available technique for microplastic removal.

PDF

References

Ahmad, H., Zahid, M., Rehan, Z. A., Rashid, A., Akram, S., Aljohani, M. M. H., Mustafa, S. K., Khalid, T., Abdelsalam, N. R., Ghareeb, R. Y., & Al-Harbi, M. S. (2022). Preparation of Polyvinylidene Fluoride Nano-Filtration Membranes Modified with Functionalized Graphene Oxide for Textile Dye Removal. Membranes, 12(2), 224. https://doi.org/10.3390/membranes12020224

Akarsu, C., Kumbur, H., & Kideys, A. E. (2021). Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Science and Technology, 84(7). https://doi.org/10.2166/wst.2021.356

Akyildiz, S. H., Sezgin, H., Yalcin, B., & Yalcin-Enis, I. (2023). Optimization of the textile wastewater pretreatment process in terms of organics removal and microplastic detection. Journal of Cleaner Production, 384, 135637. https://doi.org/10.1016/j.jclepro.2022.135637

Akyol, A., Can, O. T., & Bayramoglu, M. (2015). Treatment of hydroquinone by photochemical oxidation and electrocoagulation combined process. Journal of Water Process Engineering, 8, 45-54. https://doi.org/10.1016/j.jwpe.2015.09.001

Astawa, P. (2022). Seasonal Waste Management in the Southern Coasts of Bali, Indonesia. The Journal of Indonesia Sustainable Development Planning, 3(1), 95-100. https://doi.org/10.46456/jisdep.v3i1.266

Badawi, A. K., & Zaher, K. (2021). Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation. Journal of Water Process Engineering, 40, 101963. https://doi.org/10.1016/j.jwpe.2021.101963

Bayo, J., Olmos, S., & López-Castellanos, J. (2020). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere, 238, 124593. https://doi.org/10.1016/j.chemosphere.2019.124593

Bessa, F., Ratcliffe, N., Otero, V., Sobral, P., Marques, J. C., Waluda, C. M., Trathan, P. N., & Xavier, J. C. (2019). Microplastics in gentoo penguins from the Antarctic region. Scientific Reports, 9(1), 14191. https://doi.org/10.1038/s41598-019-50621-2

Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. https://doi.org/10.1016/j.watres.2016.01.002

Chan, C. K. M., Park, C., Chan, K. M., Mak, D. C. W., Fang, J. K. H., & Mitrano, D. M. (2021). Microplastic fibre releases from industrial wastewater effluent: A textile wet-processing mill in China. Environmental Chemistry, 18(3), 93-100. https://doi.org/10.1071/EN20143

Chadha, U., Selvaraj, S. K., Vishak Thanu, S., Cholapadath, V., Abraham, A. M., Zaiyan M, M., Manoharan, M., & Paramsivam, V. (2022). A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater. In Materials Research Express (Vol. 9, Issue 1). https://doi.org/10.1088/2053-1591/ac48b8

Corpuz, M. V. A., Buonerba, A., Napodano, P., Hasan, S., Choo, K.-H., Zarra, T., Belgiorno, V., & Naddeo, V. (2023). Technologies for the Removal of Microplastics from Wastewater: A Short Review. International Conference on Environmental Science and Technology Proceedings, 18. https://doi.org/10.30955/gnc2023.00553

Conley, K., Clum, A., Deepe, J., Lane, H., & Beckingham, B. (2019). Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Research X, 3, 100030. https://doi.org/10.1016/j.wroa.2019.100030

Chou, W. L., Wang, C. T., Chang, W. C., & Chang, S. Y. (2010). Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation. Journal of Hazardous Materials, 180(1-3), 217-224. https://doi.org/10.1016/j.jhazmat.2010.04.017

Čurlin, M., Pušić, T., Vojnović, B., & Vinčić, A. (2022). STEM Approach in Assessment of Microplastic Particles in Textile Wastewater. Tehnicki Vjesnik, 29(5), 1777-1781. https://doi.org/10.17559/TV-20220121153959

De Falco, F., Gullo, M. P., Gentile, G., Di Pace, E., Cocca, M., Gelabert, L., Brouta-Agnésa, M., Rovira, A., Escudero, R., Villalba, R., Mossotti, R., Montarsolo, A., Gavignano, S., Tonin, C., & Avella, M. (2018). Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environmental Pollution, 236, 916-925. https://doi.org/10.1016/j.envpol.2017.10.057

Emamjomeh, M. M., & Sivakumar, M. (2009). Denitrification using a monopolar electrocoagulation/flotation (ECF) process. Journal of Environmental Management, 91(2). https://doi.org/10.1016/j.jenvman.2009.09.020

Enfrin, M., Hachemi, C., Callahan, D. L., Lee, J., & Dumée, L. F. (2022). Membrane fouling by nanofibres and organic contaminants – Mechanisms and mitigation via periodic cleaning strategies. Separation and Purification Technology, 278, 119592. https://doi.org/10.1016/j.seppur.2021.119592

Folbert, M. E. F., Corbin, C., & Löhr, A. J. (2022). Sources and Leakages of Microplastics in Cruise Ship Wastewater. Frontiers in Marine Science, 9, 900047. https://doi.org/10.3389/fmars.2022.900047

Fragão, J., Bessa, F., Otero, V., Barbosa, A., Sobral, P., Waluda, C. M., Guímaro, H. R., & Xavier, J. C. (2021). Microplastics and other anthropogenic particles in Antarctica: Using penguins as biological samplers. Science of the Total Environment, 788, 147698. https://doi.org/10.1016/j.scitotenv.2021.147698

Gangula, A., Chhetri, T., Atty, M., Shanks, B., Kannan, R., Upendran, A., & Afrasiabi, Z. (2023). Unaccounted Microplastics in the Outlet of Wastewater Treatment Plants—Challenges and Opportunities. Processes, 11(3), 810. https://doi.org/10.3390/pr11030810

Ghanbari, F., Moradi, M., Mohseni-Bandpei, A., Gohari, F., Mirtaleb Abkenar, T., & Aghayani, E. (2014). Simultaneous application of iron and aluminum anodes for nitrate removal: A comprehensive parametric study. International Journal of Environmental Science and Technology, 11(6), 1653-1660. https://doi.org/10.1007/s13762-014-0587-y

Ghernaout, D., Naceur, M. W., & Ghernaout, B. (2011). A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation. Desalination and Water Treatment, 28(1-3), 287-320. https://doi.org/10.5004/dwt.2011.1493

Güven, O., Gökdağ, K., Jovanović, B., & Kıdeyş, A. E. (2017). Microplastic litter composition of the Turkish territorial waters of the Mediterranean Sea, and its occurrence in the gastrointestinal tract of fish. Environmental Pollution, 223, 286-294. https://doi.org/10.1016/j.envpol.2017.01.025

Hamidian, A. H., Ozumchelouei, E. J., Feizi, F., Wu, C., Zhang, Y., & Yang, M. (2021). A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. Journal of Cleaner Production, 295, 126480. https://doi.org/10.1016/j.jclepro.2021.126480

Han, F., Lang, C., & Qiu, Y. (2023). Research progress of supervision and inspection system for recycling waste textiles. Fangzhi Xuebao/Journal of Textile Research, 44(3). https://doi.org/10.13475/j.fzxb.20211111408 (in Chinese).

Hidayaturrahman, H., & Lee, T. G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696-702. https://doi.org/10.1016/j.marpolbul.2019.06.071

Hidayaturrahman, H., & Lee, T. G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146. https://doi.org/10.1016/j.marpolbul.2019.06.071

Hooshmandfar, A., Ayati, B., & Khodadadi, A. (2015). Electrochemical treatment of the textile wastewater containing acid red 14 by aluminium electrodes. Journal of Environmental Studies, 41(2).

Hu, C., Wang, S., Sun, J., Liu, H., & Qu, J. (2016). An effective method for improving electrocoagulation process: Optimization of Al13 polymer formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 234-240. https://doi.org/10.1016/j.colsurfa.2015.10.063

Hube, S., Eskafi, M., Hrafnkelsdóttir, K. F., Bjarnadóttir, B., Bjarnadóttir, M. Á., Axelsdóttir, S., & Wu, B. (2020). Direct membrane filtration for wastewater treatment and resource recovery: A review. In Science of the Total Environment (Vol. 710). https://doi.org/10.1016/j.scitotenv.2019.136375

Jemec, A., Horvat, P., Kunej, U., Bele, M., & Kržan, A. (2016). Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution, 219, 201-209. https://doi.org/10.1016/j.envpol.2016.10.037

Korenak, J., Hélix-Nielsen, C., Bukšek, H., & Petrinić, I. (2019). Efficiency and economic feasibility of forward osmosis in textile wastewater treatment. Journal of Cleaner Production, 210, 1483-1495. https://doi.org/10.1016/j.jclepro.2018.11.130

Kosuth, M., Mason, S. A., & Wattenberg, E. (2018). Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE, 13(4), e0194970. https://doi.org/10.1371/journal.pone.0194970

Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., Cao, Z., & Zhang, T. (2021). A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environment International, 146, 106277. https://doi.org/10.1016/j.envint.2020.106277

Mahmoud, A. S., Mostafa, M. K., & Peters, R. W. (2021). A prototype of textile wastewater treatment using coagulation and adsorption by Fe/Cu nanoparticles: Techno-economic and scaling-up studies. Nanomaterials and Nanotechnology, 11. https://doi.org/10.1177/18479804211041181

Mirjalili, M., & Zohoori, S. (2016). Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry, 6(3), 207-213. https://doi.org/10.1007/s40097-016-0189-y

Miranda, R., Latour, I., & Blanco, A. (2020). Understanding the Efficiency of Aluminum Coagulants Used in Dissolved Air Flotation (DAF). Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.00027

Ngo, P. L., Pramanik, B. K., Shah, K., & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255, 113326. https://doi.org/10.1016/j.envpol.2019.113326

Ó Briain, O., Marques Mendes, A. R., McCarron, S., Healy, M. G., & Morrison, L. (2020). The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment. Water Research, 182, 116021. https://doi.org/10.1016/j.watres.2020.116021

Piaggio, A. L., Soares, L. A., Balakrishnan, M., Guleria, T., de Kreuk, M. K., & Lindeboom, R. E. F. (2022). High suspended solids removal of Indian drain water with a down-scaled Dissolved Air Flotation (DAF) for water recovery. Assessing water-type dependence on process control variables. Environmental Challenges, 8. https://doi.org/10.1016/j.envc.2022.100567

Rosariawari, F., Rachmanto, A., Mirwan, M., & Rahmayanti, D. (2021). Electrocoagulation Process to Reduce Microplastic in Wonokromo Surface Water. Proceedings of the 2nd International Conference Eco-Innovation in Science, Engineering, and Technology, 142-147. https://doi.org/10.11594/nstp.2021.1423

Salvador Cesa, F., Turra, A., & Baruque-Ramos, J. (2017). Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Science of the Total Environment, 598, 1116-1129. https://doi.org/10.1016/j.scitotenv.2017.04.172

Sadri, S. S., & Thompson, R. C. (2014). On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Marine Pollution Bulletin, 81(1). https://doi.org/10.1016/j.marpolbul.2014.02.020

Silva, P. M., & Nanny, M. A. (2020). Impact of microplastic fibers from the degradation of nonwoven synthetic textiles to the Magdalena river water column and river sediments by the city of Neiva, Huila (Colombia). Water, 12(4), 1210. https://doi.org/10.3390/W12041210

Singh, J. P., Shrivastava, A., Mukophadhyaya, K., Prasad, D., & Sharma, V. (2017). Design and Development of Composite Nonwoven Filter for Pre-filtration of Textile Effluents Using Nano-technology. Journal of Material Science & Engineering, 06(03). https://doi.org/10.4172/2169-0022.1000340

Song, S., Van Dijk, F., Eck, G., Wu, X., Bos, S., Boom, D., Kooter, I., Wardenaar, R., Spierings, D., Cole, M., Salvati, A., Gosens, R., & Melgert, B. (2022). Inhalable textile microplastic fibers impair lung repair. ERJ Open Research, 8, 69. https://doi.org/10.1183/23120541.lsc-2022.69

Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050

Taylor, S., Annand, F., Burkinshaw, P., Greaves, F., Kelleher, M., Knight, J., Perkins, C., Tran, A., White, M., & Marsden, J. (2019). Dependence and withdrawal associated with some prescribed medicines. An evidence review. https://assets.publishing.service.gov.uk/media/5fc658398fa8f5474c800149/PHE_PMR_report_Dec2020.pdf

Tiffin, L., Hazlehurst, A., Sumner, M., & Taylor, M. (2022). Reliable quantification of microplastic release from the domestic laundry of textile fabrics. Journal of the Textile Institute, 113(4), 558-566. https://doi.org/10.1080/00405000.2021.1892305

Wang, J., de Ridder, D., van der Wal, A., & Sutton, N. B. (2021). Harnessing biodegradation potential of rapid sand filtration for organic micropollutant removal from drinking water: A review. Critical Reviews in Environmental Science and Technology, 51(18). https://doi.org/10.1080/10643389.2020.1771888

Wei, V., Oleszkiewicz, J. A., & Elektorowicz, M. (2010). Membrane fouling reduction in an electrically enhanced membrane bioreactor. Proceedings, Annual Conference - Canadian Society for Civil Engineering, 1.

Xu, C. K., Cheng, H., & Liao, Z. J. (2018). Towards sustainable growth in the textile industry: A case study of environmental policy in China. Polish Journal of Environmental Studies, 27(5), 2325-2336. https://doi.org/10.15244/pjoes/79720

Xu, X., Hou, Q., Xue, Y., Jian, Y., & Wang, L. P. (2018). Pollution characteristics and fate of microfibers in the wastewater from textile dyeing wastewater treatment plant. Water Science and Technology, 78(10), 2046-2054. https://doi.org/10.2166/wst.2018.476

Xu, Z., Bai, X., & Ye, Z. (2021). Removal and generation of microplastics in wastewater treatment plants: A review. Journal of Cleaner Production, 291, 125982. https://doi.org/10.1016/j.jclepro.2021.125982

Yang, T., Gao, M., & Nowack, B. (2023). Formation of microplastic fibers and fibrils during abrasion of a representative set of 12 polyester textiles. Science of the Total Environment, 862, 160758. https://doi.org/10.1016/j.scitotenv.2022.160758

Zerin, I. (2021). A Review on the Drawbacks of Nano-Filtration of Textile Wastewater Treatment. Southeast University Journal of Textile Engineering, 1(1), 62-65. https://www.seu.edu.bd/seujte/downloads/vol_01_No_01_Jan_2021/SEUJTE-Vol01No01-10.pdf

Zhou, H., Zhou, L., & Ma, K. (2020). Microfiber from textile dyeing and printing wastewater of a typical industrial park in China: Occurrence, removal and release. Science of the Total Environment, 739, 140329. https://doi.org/10.1016/j.scitotenv.2020.140329

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment

Downloads

Download data is not yet available.