Abstract
Sustainability is a key goal of the European Union, which is seen as a global leader of change in tackling climate change, as well as building green economic sustainability, leading to greater social prosperity. A milestone of sustainable development to support the European Union in achieving climate neutrality is the European Green Deal. Its initiatives aim to build a competitive and innovative EU economy while respecting and protecting the environment. According to current priorities, the European Union aims to become the first climate-neutral continent by 2050, thanks to critical raw materials. The purpose of this article is to analyse and assess the impact of critical raw materials on the sustainability of the European Union. The study uses a scoping review methodology and statistical analysis based on the Shapiro-Wilk test and Spearman correlation coefficient. The results show that critical raw materials are important for achieving sustainable development and implementing the EU economy towards climate neutrality. This paper contributes to the literature on sustainability. It can also provide important information for policymakers to understand how to shape green policies in the context of the strategic importance of critical raw materials in the transformation of an eco-innovative economy.
References
Arksey, H., & O’Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19-32. https://doi.org/10.1080/1364557032000119616
Alessia, A., Alessandro, B., Maria, V.-G., Carlos, V.-A., & Francesca, B. (2021). Challenges for sustainable lithium supply: A critical review. Journal of Cleaner Production, 300, 126954. http://dx.doi.org/10.1016/j.jclepro.2021.126954
Arendt, R., Muhl, M., Bach, V., & Finkbeiner, M. (2020). Criticality assessment of abiotic resource use for Europe–application of the SCARCE method. Resources Policy, 67, 101650. http://dx.doi.org/10.1016/j.resourpol.2020.101650
Christmann, P. (2021). Mineral resource governance in the 21st century and a sustainable European Union. Mineral Economics, 34(2), 187-208. https://doi.org/10.1007/s13563-021-00265-4
de Oliveira, D. P., Filipe, A., Gonçalves, P., Santos, S., & Albardeiro, L. (2021). Critical Raw Materials Deposits Map of Mainland Portugal: New Mineral Intelligence in Cartographic Form. The Cartographic Journal, 58(3), 222-232. http://dx.doi.org/10.1080/00087041.2021.1977882
European Commission. (2020). Study on the EU's list of critical raw materials (2020). Final Report. https://op.europa.eu/en/publication-detail/-/publication/c0d5292a-ee54-11ea-991b-01aa75ed71a1/language-en
Ferro, P., & Bonollo, F. (2019). Materials selection in a critical raw materials perspective. Materials & Design, 177, 107848. http://dx.doi.org/10.1016/j.matdes.2019.107848
Grzebyk, M., & Stec, M. (2015). Sustainable development in EU countries: concept and rating of levels of development. Sustainable development, 23(2), 110-123. http://dx.doi.org/10.1002/sd.1577
Guzik, K., Galos, K., Kot-Niewiadomska, A., Eerola, T., Eilu, P., Carvalho, J., & Raaness, A. (2021). Potential benefits and constraints of development of critical raw materials’ production in the EU: Analysis of selected case studies. Resources, 10(7), 67. https://doi.org/10.3390/resources10070067
Hache, E., Seck, G. S., Simoen, M., Bonnet, C., & Carcanague, S. (2019). Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport. Applied Energy, 240, 6-25. http://dx.doi.org/10.1016/j.apenergy.2019.02.057
Hackenhaar, I., Alvarenga, R. A., Bachmann, T. M., Riva, F., Horn, R., Graf, R., & Dewulf, J. (2022). A critical review of criticality methods for a European Life Cycle Sustainability Assessment. Procedia CIRP, 105, 428-433. http://dx.doi.org/10.1016/j.procir.2022.02.071
Helbig, C., Wietschel, L., Thorenz, A., & Tuma, A. (2016). How to evaluate raw material vulnerability-An overview. Resources Policy, 48, 13-24. http://dx.doi.org/10.1016/j.resourpol.2016.02.003
Hofmann, M., Hofmann, H., Hagelüken, C., & Hool, A. (2018). Critical raw materials: A perspective from the materials science community. Sustainable Materials and Technologies, 17, e00074. https://doi.org/10.1016/j.susmat.2018.e00074
Hopwood, B., Mellor, M., & O'Brien, G. (2005). Sustainable development: mapping different approaches. Sustainable Development, 13(1), 38-52. http://dx.doi.org/10.1002/sd.244
Hund, K., La Porta, D., Fabregas, T. P., Laing, T., & Drexhage, J. (2020). Minerals for climate action: The mineral intensity of the clean energy transition. Washington, D.C.: World Bank. https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf
Karali, N., & Shah, N. (2022). Bolstering supplies of critical raw materials for low-carbon technologies through circular economy strategies. Energy Research & Social Science, 88, 102534. https://doi.org/10.1016/j.erss.2022.102534
León, M. F. G., & Dewulf, J. (2020). Data quality assessment framework for critical raw materials. The case of cobalt. Resources, Conservation and Recycling, 157, 104564. https://doi.org/10.1016%2Fj.resconrec.2019.104564
Lewicka, E., Guzik, K., & Galos, K. (2021). On the possibilities of critical raw materials production from the EU’s primary sources. Resources, 10(5), 50. https://doi.org/10.3390/resources10050050
Løvik, A. N., Hagelüken, C., & Wäger, P. (2018). Improving supply security of critical metals: Current developments and research in the EU. Sustainable Materials and Technologies, 15, 9-18. http://dx.doi.org/10.1016/j.susmat.2018.01.003
Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B. L., de Boer, H. S., Fricko, O., Hejazi, M., Humpenöder, F., Iyer, G., Mima, S., Mouratiadou, I., Pietzcker, R. C., Popp, A., van den Berg, M., van Vuuren, D., & Hertwich, E. G. (2019). Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications, 10(1), 5229. https://www.nature.com/articles/s41467-019-13067-8
Mancini, L., Benini, L., & Sala, S. (2015). Resource footprint of Europe: Complementarity of material flow analysis and life cycle assessment for policy support. Environmental Science & Policy, 54(1), 367-376. https://doi.org/10.1016/j.envsci.2015.07.025
Martins, F. F., & Castro, H. (2020). Raw material depletion and scenario assessment in European Union–A circular economy approach. Energy Reports, 6, 417-422. https://doi.org/10.1016/j.egyr.2019.08.082
Mateus, A., & Martins, L. (2021). Building a mineral-based value chain in Europe: the balance between social acceptance and secure supply. Mineral Economics, 34(2), 239-261. https://link.springer.com/article/10.1007/s13563-020-00242-3
Melfos, V., & Voudouris, P. C. (2012). Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals, 2(4), 300-317. https://doi.org/10.3390/min2040300
Peiró, L. T., Polverini, D., Ardente, F., & Mathieux, F. (2020). Advances towards circular economy policies in the EU: The new Ecodesign regulation of enterprise servers. Resources, Conservation and Recycling, 154, 104426. http://dx.doi.org/10.1016/j.resconrec.2019.104426
Petranikova, M., Tkaczyk, A., Bartl, A., Amato, A., Lapkovskis, V., & Tunsu, C. (2020). Vanadium sustainability in the context of innovative recycling and sourcing development. Waste Management, 113, 521-544. https://doi.org/10.1016/j.wasman.2020.04.007
Pommeret, A., Ricci, F., & Schubert, K. (2022). Critical raw materials for the energy transition. European Economic Review, 141, 103991. https://doi.org/10.1016/j.euroecorev.2021.103991
R Core Team. (2022). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rachidi, N. R., Nwaila, G. T., Zhang, S. E., Bourdeau, J. E., & Ghorbani, Y. (2021). Assessing cobalt supply sustainability through production forecasting and implications for green energy policies. Resources Policy, 74, 102423. https://doi.org/10.1016/j.resourpol.2021.102423
Santillán-Saldivar, J., Cimprich, A., Shaikh, N., Laratte, B., Young, S. B., & Sonnemann, G. (2021). How recycling mitigates supply risks of critical raw materials: Extension of the geopolitical supply risk methodology applied to information and communication technologies in the European Union. Resources, Conservation and Recycling, 164, 105108. https://doi.org/10.1016/j.resconrec.2020.105108
Smol, M., & Kulczycka, J. (2019). Towards innovations development in the European raw material sector by evolution of the knowledge triangle. Resources Policy, 62, 453-462. https://doi.org/10.1016/j.resourpol.2019.04.006
Smol, M., Marcinek, P., Duda, J., & Szołdrowska, D. (2020). Importance of sustainable mineral resource management in implementing the circular economy (CE) model and the European Green Deal Strategy. Resources, 9(5), 55. https://doi.org/10.3390/resources9050055
Song, J., Yan, W., Cao, H., Song, Q., Ding, H., Lv, Z., Zhang, Y., & Sun, Z. (2019). Material flow analysis on critical raw materials of lithium-ion batteries in China. Journal of Cleaner Production, 215, 570-581. https://doi.org/10.1016/j.jclepro.2019.01.081
Stilwell, F. (2021). From green jobs to Green New Deal: What are the questions? The Economic and Labour Relations Review, 32(2), 155-169. https://doi.org/10.1177/10353046211009774
Urbaniec, M., & Tomala, J. (2021). Eco-innovation measuring in European and Asian countries: a comparative analysis. Economics and Environment, 79(4), 70-86. https://doi.org/10.34659/2021/4/28
Yuksekdag, A., Kose-Mutlu, B., Siddiqui, A. F., Wiesner, M. R., & Koyuncu, I. (2022). A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework – A review. Chemosphere, 293, 133620. https://doi.org/10.1016/j.chemosphere.2022.133620
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2024 Economics and Environment