Use of hydraulic model in real water loss reduction and water distribution network operational cost lowering


hydraulic modeling
water loss
cost of exploatation
loss reduction

How to Cite

Zajkowski, A., Wysocki, Łukasz, Tuz, P., Bartkowska, I., & Kruszynski, W. (2022). Use of hydraulic model in real water loss reduction and water distribution network operational cost lowering. Economics and Environment, 81(2), 186–202.


Most of the small water companies supplying a small number of consumers with water are struggling with the extremely tight budget, often making any large-scale modernisation impossible. In effect network managed by these companies is often very leaky and unreliable. One possible and cheap way of leakage reduction is the reduction of average pressure in the network. Thanks to new computing technologies, the device selection process for pressure reduction is accurate and easy to do. This study uses the hydraulic model to select required pressure-reducing valves and correct locations accurately and adequately approximate the resulting absolute water loss reduction thanks to this approach.


Baader, J., Fallis, P., Hübschen, K., Klingel, P., Knobloch, A., Laures, Ch., Oertlé, E., Trujillo, A., R. & Ziegler, D. (2011). Guidelines for water loss reduction – a focus on pressure management. Deutsche Gesellschaft für Internationale Zusammenarbeit.

Dawidowicz, J., Bartkowska, I., Kazimierowicz, J., Czapczuk, A., & Walery, M. J. (2021). Model of the c&rt tree for the assessment of the technical variant of the water distribution system. In D. Oraczewska & N. Vrons’ka (Eds.) Water Supply and Wastewater Disposal: Designing, Construction, Operation and Monitoring: Proceedings of the 4th International Scientific-Practical Conference (pp. 134–135). Lviv: Lviv Polytechnic National University.

Gwoździej-Mazur, J., & Świętochowski, K. (2019). Non-Uniformity of Water Demands in a Rural Water Supply System. Journal of Ecological Engineering, 20(8), 245–251.

Gwoździej-Mazur, J., & Świętochowski, K. (2021). Evaluation of Real Water Losses and the Failure of Urban-Rural Water Supply System. Journal of Ecological Engineering, 22(1), 132–138.

Mckenzie, R. S. & Wegelin, W. A. (2009). Implementation of pressure management in municipal water supply systems. IWA, pres. Paper 0309.

Lewis, A. Rossman et al. (2020). EPANET 2.2 User Manual.

Pearson, D. (2019). Standard Definitions for Water Losses

Świętochowska, M., Bartkowska, I., & Gwoździej-Mazur, J. (2021). Energy Optimization of the Pumping Station, Environmental Sciences Proceedings 9/1, 1–3.

Świętochowska, M. & Bartkowska, I. (2022). Optimization of Energy Consumption in the Pumping Station Supplying Two Zones of the Water Supply System. Energies. 15(1):1–15.

The European Federation of National Associations of Water Services (2021). Europe’s Water in Figures. An overview of the European drinking water and wastewater sectors.

Trębicka, A. (2016). Ekonomiczne aspekty monitorowania pracy podsystemu dystrybucji wody podczas symulacji komputerowej. Ekonomia i Środowisko, 1, 107–116.

Walski, T. M. (1986). Case study: Pipe network model calibration issues. Journal of Water Resources Planning and Management, 112(2), 238–249.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Ekonomia i Środowisko - Economics and Environment


Download data is not yet available.