Analysis of aerobic and anaerobic sewage sludge disposal concepts
PDF

Keywords

sewage sludge
sludge
sewage sludge treatment
sewage sludge management
capital expenditure
operating costs

How to Cite

Bartkowska, I., Wawrentowicz, D., & Dzienis, L. (2022). Analysis of aerobic and anaerobic sewage sludge disposal concepts. Ekonomia I Środowisko - Economics and Environment, 81(2), 203–221. https://doi.org/10.34659/eis.2022.81.2.451

Abstract

The article aimed to analyze the concept of modernisation of sludge management prepared for an exemplary sewage sludge treatment plant. Four variants of solutions, based on different processes, aerobic (oxygenic), anaerobic or – aerobic – anaerobic, were discussed. The article presents the characteristics of essential elements of the proposed solutions. The technical and technological parameters of each of the variants are exposed. The expected capital expenditure and basic operating costs are presented. A cost-effectiveness analysis of the options has also been carried out. The analysed technological processes ensure obtaining hygienically and sanitary safe end products. They contribute significantly to minimising the amount of sewage sludge. The most economically efficient, with the lowest average annual costs, is the variant with the application of anaerobic thermo-philic-mesophilic sludge stabilisation. The highest average annual costs were obtained for the variant
with drying and incineration of sludge.

https://doi.org/10.34659/eis.2022.81.2.451
PDF

References

Bartkowska, I. (2015). Drop in dry mass and organic substance content in autothermal thermophilic aerobic digestion. Process Safety and Environmental Protection, 98, 170–175.

Bartkowska, I. (2014). Influence of the sewage sludge stabilisation process on its oxidation-reduction potential value. Environmental Technology, 35(17), 2160–2166.

Bartkowska, I., Biedka, P., & Tałałaj, I. A. (2019). Analysis of the quality of stabilised municipal sewage sludge. Journal of Ecological Engineering, 20(2), 200–208. https://doi.org/10.12911/22998993/99306

Bartkowska, I., & Dzienis, L. (2019). Utilization of sewage sludge after the process of autothermal digestion. Journal of Ecological Engineering, 20(8), 44–49. https://doi.org/10.12911/22998993/110840

Borowski, S., & Szopa, J. S. (2007). Experiences with the dual digestion of municipal sewage sludge. Bioresource Technology, 98, 1199–1207.

Cheng, J., Liu, Y., & Kong, F. (2016). Effects of cell lysis in gas yield and sludge stabilization by combined process of thermophilic aerobic and anaerobic digestion. Procedia Environmental Sciences, 31, 50–58. https://doi.org/10.1016/j.proenv.2016.02.007

Chin, S. C., Ing, D. S., Kusbiantoro, A., Wong, J. K., & Ahmad, S. W. (2016). Characterization of sewage sludge ash (SSA) in cement mortar. ARPN Journal of Engineering and Applied Sciences, 11 (4), 2242–2247.

Gawdzik, J., & Latosińska, J. (2014). Ocena immobilizacji metali ciężkich z popiołów ze spalania osadów ściekowych. Inżynieria i Ochrona Środowiska, 17(3), 415–421.

Grübel, K., Kuglarz, M., Mrowiec, B., & Suschka, J. (2014). Zastosowanie wstępnej hybrydowej hydrolizy osadu czynnego dla zwiększenia efektywności dwustopniowej fermentacji metanowej. Inżynieria i Ochrona Środowiska, 17(2), 255–268.

Hartmann, T. E., Möller, K., Meyer, C., & Müller, T. (2020). Partial replacement of rock phosphate by sewage sludge ash for the production of superphosphate fertilizers. Journal of Plant Nutrition and Soil Science, 183, 233–237. https://doi.org/10.1002/jpln.201900085

Herzel, H., Krüger, O., Hermann, L., & Adam, C. (2016). Sewage sludge ash – A promising secondary phosphorus source for fertilizer production. Science of The Total Environment, 542 (B), 1136–1143.

Hudziak, G., Gorazda, K., & Wzorek, Z. (2012). Główne kierunki w zastosowaniu popiołów po termicznej obróbce osadów ściekowych. Czasopismo Techniczne, 16, 41–50.

Hunter, P. R., Pond, K., Jagals, P., & Cameron, J. (2009). An assessment of the costs and benefits of interventions aimed at improving rural community water supplies in developed countries. Science of Total Environment, 407(12), 3681–3685.

Jang, H. M., Cho, H. U., Park, S. K., & Ha, J. H. (2014). Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Research, 48, 1–14.

Jang, H. M., Park, S. K., Ha, J. H., & Park, J. M. (2013). Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production. Bioresource Technology, 145, 80–89.

Karolinczak, B., & Miłaszewski, R. (2016). Zastosowanie metod oceny ekonomicznej efektywności obiektów wodociągowych i kanalizacyjnych. Rocznik Ochrony Środowiska, 18, 770–782.

Karolinczak, B., Miłaszewski, R., & Sztuk, A. (2015). Analiza efektywności kosztowej różnych wariantów technologicznych przydomowych oczyszczalni ścieków. Rocznik Ochrony Środowiska, 17, 726–746.

Kato, S., Fogarty, E., & Bowman, D. (2003). Effect of aerobic and anaerobic digestion on the viability of Cryptosporidium parvum oocyst and Ascaris eggs. International Journal of Environmental Health Research, 13(2), 169–179.

Miłaszewski, R. (2003). Ekonomika ochrony wód powierzchniowych. Białystok: Wydawnictwo Ekonomia i Środowisko.

Molinos-Senante, M., Hernández-Sancho, F., & Sala-Garrido, R. (2010). Economic feasibility study for wastewater treatment: A cost–benefit analysis. Science of The Total Environment, 408(20), 4396–4402.

Novak, J. T., Banjade, S., & Murthy, S. N. (2011). Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal. Water Research, 45, 618–624.

Pagilla, K. R., Kim, H., & Cheunbarn, T. (2000). Aerobic thermophilic and anaerobic mesophilic treatment of swine waste. Water Research, 34(10), 2747–2753.

Payá, J., Monzó, J., Borrachero, M. V., & Soriano, L. (2019). Sewage sludge ash. In J. de Brito & F. Agrela (Eds.), New Trends in Eco-efficient and Recycled Concrete (pp. 121–152). Duxford: Woodhead Publishing.

Rashid, M. M., & Hayes, D. F. (2011). Needs-based sewerage prioritization: event conventional cost-benefit analysis. Journal of Environmental Management, 92(10), 2427–2440.

Sall, M., Gueye, P. M., Traoré, A., Diouf, S., Sy, M., Bouchez, G., Wade, A. C., Sané, M. L., Dieye, G., & Diop, D. (2020). Assessment of Fine and Coarse Sewage Sludge Ashes for Their Potential Use in Civil Engineering. Journal of Civil, Construction and Environmental Engineering, 5(4), 99–106. https://doi.org/10.11648/j.jccee.20200504.13

Shin, J., Jang, H. M., Shin, S. G., & Kim, Y. M. (2019). Thermophilic anaerobic digestion: Effect of start-up strategies on performance and microbial community. The Science of the total environment, 687, 87–95. https://doi.org/10.1016/j.scitotenv.2019.05.428

Wang, F., Hidaka, T., Uchida, T., & Tsumori, J. (2014). Thermophilic anaerobic digestion of sewage sludge with high solids content. Water Science and Technology, 69 (9), 1949–1955.

Zawieja, I., Wolny L., & Próba M. (2016). Efektywność generowania lotnych kwasów tłuszczowych podczas mezofilowej i termofilowej fermentacji metanowej osadów nadmiernych. Inżynieria Ekologiczna, 48, 226–232. https://doi.org/10.12912/23920629/63267

Zupančič, G. D., & Roš, M. (2008). Aerobic and two-stage anaerobic–aerobic sludge digestion with pure oxygen and air aeration. Bioresource Technology, 99, 100–109.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Ekonomia i Środowisko - Economics and Environment

Downloads

Download data is not yet available.