Ecological, technical and economic aspects of using flint wastes as aggregate for special concretes


flint waste
green concrete
recycled concrete
aggregate substitute
aggressive environments

How to Cite

Zegardlo, B. (2022). Ecological, technical and economic aspects of using flint wastes as aggregate for special concretes. Ekonomia I Środowisko - Economics and Environment, 80(1), 125–148.


This paper examines the ecological, technical, and economic aspects of using flint wastes extracted during the chalk extraction. The study presents the adverse effects of mining on the environment and draws attention to the mining waste generated. Flint wastes are proposed to be used in the crushed form as a substitute for high-quality aggregate for cement composites. Traditional concretes, which contained gravel and basalt aggregates in their volume, were used as control composites. Due to the satisfactory results of the technical tests, the described waste disposal method was also analysed in terms of possible economic benefits. Conclusions from the conducted tests proved that crushed flint waste is technically equal to high-quality special aggregates. At the same time, the costs of its acquisition and production in suitable deposition systems can be lower than the cheapest traditional gravel aggregates available on the market.


Atiş, C. (2005). Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cement and Concrete Research, 35, 1112-1121.

Becla, A., Czaja, S., & Zielińska, A. (2012). Cost-benefit analysis in the valuation of the natural environment. Warsaw: Difin.

Boardman, A. E., Greenberg, D., Vining, A., & Weimer, D. (2006). Cost-Benefit Analysis: Concepts and Practice, 3rd edition. Upper Saddle River. New Jersey: Pearson Prentice Hall.

Bukowski, Z. (2014). A plan for recycling. Recycling, 7-8, 16-17.

Bursztyka, P. (2019). Design and analysis of basic properties of concrete composite containing silica waste in its composition. [Thesis under the direction of Bartosz Zegardło]. Biała Podlaska: PSW.

Czarnecki, L., Broniewski, T., & Henning, O. (1995). Chemistry in Building Industry, Warsaw: Arkady.

Czarnecki, L., Łukowski, P., Garbacz, A., & Chmielewska, B. (2007). Ćwiczenia laboratoryjne z chemii budowlanej, Warsaw: OWPW.

Debieb, H., Farid, S., Kenai, L., & Said, A. (2008). The use of coarse and fine crushed bricks as aggregate in concrete, Construction and Building Materials, 25, 886-893.

Gruner, M. (1983). Corrosion and protection of concrete, Warsaw: Arkady.

Góralczyk, S., & Kukielska, D. (2010). Quality of domestic aggregates. Mining and Geoengineering, 34, 211-224.

Hansen, H., & Narud, H. (2003). Strength of recycled concrete made from crushed concrete coarse aggregate, Concrete International – Design and Construction, 5, 35-48.

Jamroży, Z. (2006). Beton i jego technologie (Concrete and its technologies). Warsaw: PWN.

Kasztelewicz, Z. (2010). Rekultywacja terenów pogórniczych w polskich kopalniach odkrywkowych. Kraków: Fundacja Nauka i Tradycje Gór. AGH.

Khalloo, R., & Ali, R. (1994). Properties of concrete using crushed clinker brick as coarse aggregate. ACI Materials Journal, 4, 91-94.

Kudełko, J., & Nitek, D. (2011). Wykorzystanie odpadów z działalności górniczej jako substytutów surowców minernych. Cuprum, 3(60), 51-63.

Lipiński, A. (2021). Komentarz do ustawy: Prawo geologiczne i górnicze Dz. U. 2020, Prawne Problemy Górnictwa i Ochrony Środowiska, 1, 1-20.

Nieć, M., & Pietrzyk-Sokulska, E. (2008). Górnictwo wspomagające ochrony środowiska i jej kształtowanie – doświadczenia Kieleckich Kopalń Surowców Mineralnych. Gospodarowanie Surowcami Mieralnymi, 24(4), 251-258.

Ogrodnik, P., & Zegardło, B. (2018). Use of waste ceramic materials and polyester resins to produce synthetic composites with features of structural concretes used in construction, Chemical Industry, 97(1), 144-148.

Ogrodnik, P., Zegardło, B., & Szeląg, M. (2017). The use of heat-resistant concrete made with ceramic sanitary ware waste for a thermal energy storage, Applied Sciences, 7(12), 1-16.

Polish Committee for Standardization. (2008). Testing of mechanical and physical properties of aggregates - Part 7: Determination of density of filler – Pycnometric method. (PN-EN 1097-7:2008).

Polish Committee for Standardization. (2009). Testing hardened concrete. Flexural strength of test specimens. (PN-EN 12390-5:2009).

Polish Committee for Standardization. (2009). Testing hardened concrete – Part 7: Density of hardened concrete (EN 123907:2009).

Polish Committee for Standardization. (2011). Testing hardened concrete. Compressive strength of test specimens. (PN-EN 12390-3:2011).

Polish Committee for Standardization. (2013). Testing of mechanical and physical properties of aggregates - Part 6: Determination of density of grains and absorbability. (PN-EN 1097-6:2013-11).

Polish Committee for Standardization. (2013). Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorp tion. (PN-EN 1097-6:2013).

Rao, K. N., Jha, S., & Misra, A. (2007). Use of aggregates from recycled construction and demolition waste in concrete, Res. Conserv. Recycl., 50, 71-81.

Ryka, W., & Maliszewska, A. (1991). Słownik petrograficzny, Warsaw: Wydawnictwa Geologiczne.

Shikano, H. et al. (1990). Role of silica flour in low cement castable, Taikabutsu Overseas, 1, 17-22.

Szot-Gabryś, T. (2013). The concept of cost-benefit accounting in corporate social responsibility accounting. Warsaw: Difin.

Szuflicki, M., Malon, A., & Tymiński, M. (2021). Bilans zasobów złóż kopalin w Polsce,Warsaw: Państwowy Instytut Geologiczny.

Tokarski, D., & Zegardło, B. (2020). Costs and economic benefits of recycling electrical insulators in special concretes production, Ekonomia i Środowisko, 4, 95-102.

Uberman, R., Pietrzyk-Sokulska, E., & Kulczycka, J. (2014). Environmental impact assessment of mining activities-trends of change. Future: World-Europe-Poland, 2(30), 87-119.

Zegardło, B., Brzyski, P., Rymuza, K., & Bombik, A. (2018c). Analysis of the effects of aggressive environments simulating municipal sewage on recycled concretes based on selected ceramic waste. Materials, 11(12), 25-65.

Zegardło, B., Drymała, T., & Nitychoruk, J. (2018b). Composites based on unsaturated o-phthalic polyester resin filled with glass aggregate from depleted car side windows, Chemical Industry, 97(4), 595-600.

Zegardło, B., Szeląg, M., & Ogrodnik, P. (2016). Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes – The method of production and the interfacial transition zone, Construction and Building Materials, 122, 736-742.

Zegardło, B., Szeląg, M., & Ogrodnik, P. (2018a). Concrete resistant to spalling made with recycled aggregate from sanitary ceramic wastes – The effect of moisture and porosity on destructive processes occurring in fire conditions, Construction and Building Materials, 173, 58-68.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Ekonomia i Środowisko - Economics and Environment


Download data is not yet available.