MODELOWANIE ZMIAN WIEKU WODY W SYSTEMACH DYSTRYBUCJI WODY W CZASIE I PRZESTRZENI
PDF (Angielski)

Słowa kluczowe

wiek wody
model matematyczny
system dystrybucji wody
właściwości fizykochemiczne i bakteriologiczne
przepływ świeżej wody

Jak cytować

Trębicka, A. (2023). MODELOWANIE ZMIAN WIEKU WODY W SYSTEMACH DYSTRYBUCJI WODY W CZASIE I PRZESTRZENI. Czasopismo "Economics and Environment", 83(4), 91-102. https://doi.org/10.34659/eis.2022.83.4.498

Abstrakt

W artykule przedstawiono szczególnie ważny wariant badawczy w procesie modelowania systemów dystrybucji wody (SDW), jakim jest wiek wody. Wiek wody w rurach jest parametrem, który określa świeżość wody. W badaniu przeanalizowano zmianę wieku wody poprzez obserwację podstawowych parametrów ciśnienia i przepływu wody.

Badania prowadzono w oparciu o model matematyczny sieci wodociągowej. Jako narzędzie badawcze wykorzystano Program EPANET, które umożliwia modelowanie zmian wieku wody w całym systemie dystrybucji wody w czasie.

Podstawą przeprowadzonych badań stał się czynnik czasu, który pełni szczególnie ważną funkcję w procesie zarzadzania systemem dystrybucji wody. Biorąc pod uwagę czas, zaobserwowano, ile wody pozostaje na danym odcinku od momentu, w którym spływa ona z ujęcia i jest mieszana z wodą już obecną w całej sieci. Analizowano szereg wariantów symulacyjnych pod kątem działania systemu dystrybucji wody, gdzie kluczowym problemem była stagnacja wody.

Należy zaznaczyć, że stagnacja wody jest szczególnie niebezpieczna w przypadku SDW, a uzyskane wyniki wykazały widoczne jej miejsca na badanym modelu. Przy symulacjach trwających więcej niż 8, 10 dni zauważono, wyraźne pogorszenie jej jakości. Wyodrębniono potencjalne miejsca wtórnego zanieczyszczenia. W wyniku tej sytuacji prowadzone zostały wszelkie prace mające na celu częstszego monitorowanie wody na tym obszarze pod kątem właściwości fizykochemicznych i bakteriologicznych oraz regularne płukanie rurociągów.

Powyższe badania mają szczególne znaczenie z punktu widzenia zarządzania efektywnością działania sieci wodociągowej. Przeprowadzona analiza wody w systemach wodociągach, ulegającej stagnacji, a tym samym starzejąca się, pokazuje że efektywność pracy systemu znacznie spada. Zmienność warunków w systemie dystrybucji wody sprawia również, że wydajność pracy SDW, a zwłaszcza jednostek pompujących staje się zmienna.

PDF (Angielski)

Bibliografia

Blokker, E. J. M., Furnass, W. R., Machell, J., Mounce, S. R., Schaap, P. G., & Boxall, J. B. (2016). Relating Water Quality and Age in Drink-ing Water Distribution Systems Using Self-Organising Maps. Environments, 3(2), 10. https://doi.org/10.3390/environments3020010

Butler, D., Ward, S., Sweetapple, C., Astaraie-Imani, M., Diao, K., Farmani, R., & Fu, G. (2016). Reliable, resilient and sustainable water management: the Safe & SuRe approach. Global Challenges, 1(1), 63-77 https://doi.org/10.1002/gch2.1010

Diao, K. G., Barjenbruch, M., & Bracklow, U. (2010). Study on the Impacts of Peaking Factors on a Water Distribution System in Germany. Water Supply, 10(2), 165-172. https://doi.org/10.2166/ws.2010.168

Diao, K. G., Zhou, Y. W., & Rauch, W. (2012). Automated creation of district metered areas boundaries in water distribution systems. Journal of Water Resources Planning and Management, 139, 184-190.

Filion, Y. (2008). Impact of Urban Form on Energy Use in Water Distribution Systems. Journal of Infrastructure Systems, 14(4), 337–346. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:4(337)

Filion, Y., Adams, B., & Karney, B. (2007). Correlation of Demands in Water Distribution Network Design. Journal of Water Resources Planning and Management, 133(2), 137-144. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:2(137)

Gora, S. (2011). Water Quality and Demand on Public Water Supplies with Variable Flow Regimes and Water Demand. Canada: CBCL Limited: Halifax, NS.

Kanakoudis, V., & Gonelas, K. (2019). Accurate water demand spatial allocation for water networks modelling using a new approach. Urban Water Journal, 12(5), 362-379. https://doi.org/10.1080/1573062X.2014.900811

Kurek, W., & Ostfeld, A. (2013). Multi-Objective Optimization of Water Quality, Pumps Operation, and Storage Sizing of Water Distribution Systems. Journal Environmental Management, 115, 189-197. https://10.1016/j.jenvman.2012.11.030

Machell, J., & Boxall, J. (2014). Modeling and Field Work to Investigate the Relationship between the Age and the Quality of Drinking Water at Customer’s Taps. J. Water Resour. Plan. Manag., 138(6), 624-638.

Marchi, A., Salomons, E., Ostfeld, A., Kapelan, Simpson, A. R. et al. (2012). The Battle of the Water Networks II (BWN–II). Journal of Water Resources Planning and Management, 140(7).

Masters, S., Parks, J., Atassi, A., & Edwards, M.A. (2015). Distribution System Water Age Can Create Premise Plumbing Corrosion Hotspots. Environmental Monitoring and Assessment, 187, 559. DOI: 10.1007/s10661-015-4747-4

Muranho, J., Ferreira, A., Sousa, J., Gomes, A., & Sá Marques, A. (2012). WaterNetGen: an EPANET extension for automatic water distribution networks models generation and pipe sizing. Water Science & Technology Water Supply, 12(1), 117-123. DOI:10.2166/ws.2011.121

Ostfeld, A., Salomons, E., Ormsbee, L., Uber, J. G., Bros, C. M., Kalungi, P., Burd, R., Zazula-Coetzee, B., Belrain, T., Kang, D., et al. (2011). The Battle of the Water Calibration Networks (BWCN). J. Water Res. Plan. Manag. 138(5), 523-532.

Preis, A., Allen, M., & Whittle, A. J. (2010). On-Line Hydraulic Modeling of a Water Distribution System in Singapore. Proceedings of Water Distribution System Analysis, USA.

Prest, E. I., Schaap, P. G., Besmer, M. D., & Hammes, F. (2021). Dynamic Hydraulics in a Drinking Water Distribution System Influence Suspended Particles and Turbidity, But Not Microbiology. Water, 13(1), 109. https://doi.org/10.3390/w13010109

Rossman, L. A. (2000). EPANET 2 Users Manual. Cincinnati: U.S. Environmental Protection Agency.

Shokoohi, M., Tabesh, M., Nazif, S., & Dini, M. (2017). Water Quality Based Multi-Objective Optimal Design of Water Distribution Systems. Water Resour. Manag., 31(1), 93-108.

Sitzenfrei, R., Möderl, M., Hellbach, C., & Rauch, W. (2011). Application of a Stochastic Test Case Generation for Water Distribution Systems. Proceedings of the World Environmental and Water Resources Congress, USA, 113-120.

Sitzenfrei, R., Möderl, M., Mair, M., & Rauch, W. (2012). Modeling Dynamic Expansion of Water Distribution Systems for New Urban Developments. Proceedings of the World Environmental and Water Resources Congress, USA, 3186-3196.

Tamminen, S., Ramos, H., & Covas, D. (2008). Water Supply System Performance for Different Pipe Materials Part I: Water Quality Analysis. Water Resour. Manag., 22, 1579–1607. https://doi.org/10.1007/s11269-008-9244-x

Walski, T. M., Chase, D. V., Savic, D. A., Grayman, W., Beckwith, S., & Koelle, E. (2003). Advanced Water Distribution Modeling and Management. Civil and Environmental Engineering and Engineering Mechanics Faculty Publications. Paper 18. http://ecommons.udayton.edu/cee_fac_pub/18

World Health Organization. (2017). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. Geneva: World Health Organization.

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Prawa autorskie (c) 2023 Czasopismo Ekonomia i Środowisko

Downloads