Rainwater harvesting on animal farms as a response to the increasing water deficit in agriculture
PDF

Keywords

rainwater management
rainwater harvesting systems
farms
livestock buildings
economic efficiency

How to Cite

Napierała, M., Mrozik, K. D., & Kęsicka, B. (2025). Rainwater harvesting on animal farms as a response to the increasing water deficit in agriculture. Economics and Environment, 90(3), 903. https://doi.org/10.34659/eis.2024.90.3.903

Abstract

In the context of growing water scarity in agriculture the harvesting of rainwater from livestock buildings could be seen as a new opportunity. Based on the National Agricultural Census (2020), rainfall data (1991-2020) and the opportunity and investment costs related to the installation purchase, a prognostic analysis was conducted. The analysis revealed the immense potential of farms for rainwater collection. In Poland there are 201,980 cowsheds, 65,088 pigsties and 96,435 poultry houses, representing a total area of 8,820 ha, which allows additionally to retain over 41 million m3 of water per year. This amount will cover only 15% of the livestock total water demand. It should be noted that the average economic efficiency (EF) value for the entire country was 81.6%, and the differences in the analyzed animal groups reached a moderate level (CV=14.7%±0.1 depending on the groups). The unit price of tap water was the main determinant of the highest EF of investment in rainwater harvesting (RWH) in particular voivodeships.

PDF

References

Act from 14 January 2002. Act on determining average water consumption standards. Journal of Laws No. 8, item 70. https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20020080070/O/D20020070.pdf (in Polish).

Adham, A., Wesseling, J. G., Abed, R., Riksen, M., Ouessar, M., & Ritsema, C. J. (2019). Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in Southeastern Tunisia. Agricultural Water Management, 221, 131-140. https://doi.org/10.1016/j.agwat.2019.05.006

Bafdal, N., & Dwiratna, S. (2018). Water harvesting system as an alternative appropriate technology to supply irrigation on red oval cherry tomato production. International Journal on Advanced Science, Engineering and Information Technology, 8(2), 561-566. http://dx.doi.org/10.18517/ijaseit.8.2.5468

Berbeć, A. K., Feledyn-Szewczyk, B., & Kopiński, J. (2017). Ocena stopnia zrównoważenia gospodarstw rolnych o różnych kierunkach produkcji za pomocą modelu RISE. Problems of World Agriculture / Problemy Rolnictwa Światowego, 17(2), 7-17. https://doi.org/10.22630/PRS.2017.17.2.22 (in Polish).

Brumm, M. (2006). Patterns of Drinking Water Use in Pork Production Facilities. https://digitalcommons.unl.edu/coopext_swine/221

Campisano, A., & Modica, C. (2012). Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resources, Conservation and Recycling, 63, 9-16. https://doi.org/10.1016/j.resconrec.2012.03.007

Central Statistical Office of Poland. (2020). Farm animals in 2020. https://stat.gov.pl/en/topics/agriculture-forestry/animal-production-farm-animals/farm-animals-in-2020,1,3.html (in Polish).

Chiu, Y. R., Liaw, C. H., & Chen, L. C. (2009). Optimizing rainwater harvesting systems as an innovative approach to saving energy in hilly communities. Renewable Energy, 34(3), 492-498. https://doi.org/10.1016/j.renene.2008.06.016

Christian Amos, C., Rahman, A., & Mwangi Gathenya, J. (2016). Economic analysis and feasibility of rainwater harvesting systems in urban and peri-urban environments: A review of the global situation with a special focus on Australia and Kenya. Water, 8(4), 149. https://doi.org/10.3390/w8040149

Devkota, J., Schlachter, H., & Apul, D. (2015). Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. Journal of Cleaner Production, 5, 311-321. https://doi.org/10.1016/j.jclepro.2015.02.021

Drożdż-Szczybura, M. (2011). O wyrazie architektonicznym budynków inwentarskich. Od kraalu do farmy pionowej. Kraków: Wydawnictwo Politechniki Krakowskiej. (in Polish).

Environment Agency. (2009). Rainwater Harvesting: an on-farm guide, rainwater as a resource. https://www.ecosystemsdirect.co.uk/uploads/documents/Rainwater%20Harvesting%20on%20Farms(2).pdf

Ertop, H., Kocięcka, J., Atilgan, A., Liberacki, D., Niemiec, M., & Rolbiecki, R. (2023). The importance of rainwater harvesting and its usage possibilities: Antalya example (Turkey). Water, 15(12), 2194. https://doi.org/10.3390/w15122194

European Environment Agency. (2018). European waters—assessment of status and pressures. https://www.eea.europa.eu/publications/state-of-water

Eurostat. (2019). Agri-environmental indicator — irrigation. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_irrigation#Analysis_at_regional_level

Eurostat. (2020). Production of poultry meat in slaugherthouses: Poultry [TAG 00043]. https://ec.europa.eu/eurostat/databrowser/view/TAG00043/default/table

Farreny, R., Morales-Pinzón, T., Guisasola, A., Tayà, C., Rieradevall, J., & Gabarrell, X. (2011). Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water research, 45(10), 3245-3254. https://doi.org/10.1016/j.watres.2011.03.036

Fernandes, L. F. S., Terêncio, D. P., & Pacheco, F. A. (2015). Rainwater harvesting systems for low demanding applications. Science of the Total Environment, 529, 91-100. https://doi.org/10.1016/j.scitotenv.2015.05.061

Han, D., & Bray, M. (2006). Automated Thiessen polygon generation. Water Resources Research, 42(11). https://doi.org/10.1029/2005WR004365

Hristov, J., Barreiro-Hurle, J., Salputra, G., Blanco, M., & Witzke, P. (2021). Reuse of treated water in European agriculture: Potential to address water scarcity under climate change. Agricultural Water Management, 251, 106872. https://doi.org/10.1016/j.agwat.2021.106872

IMGW-PiB. (2024, June 30). Climate standards 1991-2020. https://klimat.imgw.pl/pl/climate-normals/OPAD_SUMA (in Polish).

Ingrao, C., Strippoli, R., Lagioia, G., & Huisingh, D. (2023). Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon, 9(8), e18507. https://doi.org/10.1016/j.heliyon.2023.e18507

Kłos, L. (2023). Agricultural producers’ knowledge of rational water management – case stage (Poland, EU). Economics and Environment, 85(2), 271-295. https://doi.org/10.34659/eis.2023.85.2.553

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/deliver/index/docId/40083/file/metz_Vol_15_No_3_p259-263_World_Map_of_the_Koppen_Geiger_climate_classification_updated_55034.pdf

Kubiak-Wójcicka, K., & Machula, S. (2020). Influence of climate changes on the state of water resources in Poland and their usage. Geosciences, 10(8), 312. https://doi.org/10.3390/geosciences10080312

Londra, P. A., Theocharis, A. T., Baltas, E., & Tsihrintzis, V. A. (2018). Assessment of rainwater harvesting tank size for livestock use. Water Science and Technology: Water Supply, 18(2), 555-566. https://doi.org/10.2166/ws.2017.136

Massabie, P., Granier, R., & Dividich, J. L. (1996). Effect of ambient temperature on zootechnical performance of growing-finishing pigs fed ad libitum. Journées de la Recherche Porcine en France, 28, 189-194.

Mekonnen, M., & Hoekstra, A. Y. (2010). The green, blue and grey water footprint of farm animals and animal products. https://www.waterfootprint.org/resources/Report-48-WaterFootprint-AnimalProducts-Vol2_1.pdf

Mrozik, K. (2012). The impact of soil cultivations methods on retention capacity of Kania river basin. Wasser Wirtschaft, 102(1-2), 75-79. https://doi.org/10.1365/s35147-012-0213-1 (in German).

Mrozik, K., & Idczak, P. (2017). The capacity of ecosystem services in small water retention measures. Economics and Environment, 62(3), 37-48. https://www.ekonomiaisrodowisko.pl/journal/article/view/316

Mubareka, S., Maes, J., Lavalle, C., & de Roo, A. (2013). Estimation of water requirements by livestock in Europe. Ecosystem Services, 4, 139-145. https://doi.org/10.1016/j.ecoser.2013.03.001

Muhirirwe, S. C., Kisakye, V., & Van der Bruggen, B. (2022). Reliability and economic assessment of rainwater harvesting systems for dairy production. Resources, Conservation & Recycling Advances, 14, 200079. https://doi.org/10.1016/j.rcradv.2022.200079

Nagypál, V., Mikó, E., & Hodúr, C. (2020). Sustainable water use considering three Hungarian dairy farms. Sustainability, 12(8), 3145. https://doi.org/10.3390/su12083145

NBP. (2024). Middle exchange rates of foreign currencies – table A. https://nbp.pl/en/archiwum-kursow/table-no-161-a-nbp-2024-of-2024-08-20/

Pelak, N., & Porporato, A. (2016). Sizing a rainwater harvesting cistern by minimizing costs. Journal of Hydrology, 541, 1340-1347. https://doi.org/10.1016/j.jhydrol.2016.08.036

Polish Chamber of Insurance. (2023). A climate of mounting losses. The role of insurance in climate protection and the energy transition. https://piu.org.pl/wp-content/uploads/2023/11/PIU-raport-klimatyczny-2023_final_druk_eng_lekki.pdf

Polish Investment & Trade Agency. (2024, July 22). The Polish food specialties sector. https://www.paih.gov.pl/wp-content/uploads/2024/02/The-Polish-Food-Specialties-Sector-2023.pdf

Raimondi, A., Quinn, R., Abhijith, G. R., Becciu, G., & Ostfeld, A. (2023). Rainwater Harvesting and Treatment: State of the Art and Perspectives. Water, 15(18), 1518. https://doi.org/10.3390/w15081518

Rendón-Huerta, J. A., Pinos-Rodríguez, J. M., Kebreab, E., García-López, J. C., & Vicente, J. G. (2018). Comparison of greenhouse gas emissions from Mexican intensive dairy farms. South African Journal of Animal Science, 48(1), 48-55. https://doi.org/10.4314/sajas.v48i1.6

Rodrigues, G. C., Paredes, P., Gonçalves, J. M., Alves, I., & Pereira, L. S. (2013). Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agricultural Water Management, 126, 85-96. http://doi.org/10.1016/j.agwat.2013.05.005

Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J., & D’Odorico, P. (2020). Global agricultural economic water scarcity. Science Advances, 6(18), eaaz6031. http://dx.doi.org/10.1126/sciadv.aaz6031

Santos, C., & Taveira-Pinto, F. (2013). Analysis of different criteria to size rainwater storage tanks using detailed methods. Resources, Conservation and recycling, 71, 1-6. http://doi.org/10.1016/j.resconrec.2012.11.004

Santos, C., Imteaz, M. A., Ghisi, E., & Matos, C. (2020). The effect of climate change on domestic Rainwater Harvesting. Science of the Total Environment, 729, 138967. https://doi.org/10.1016/j.scitotenv.2020.138967

Słyś, D., & Stec, A. (2020). Centralized or decentralized rainwater harvesting systems: A case study. Resources, 9(1), 5. https://doi.org/10.3390/resources9010005

Statistics Poland. (2023). Poland in figures 2023. https://stat.gov.pl/en/topics/other-studies/other-aggregated-studies/poland-in-figures-2023,9,17.html?pdf=1

Sultana, M. N., Uddin, M. M., Ridoutt, B. G., & Peters, K. J. (2014). Comparison of water use in global milk production for different typical farms. Agricultural Systems, 129, 9-21. https://doi.org/10.1016/j.agsy.2014.05.002

Szwed, M. (2019). Variability of precipitation in Poland under climate change. Theoretical and Applied Climatology, 135(3), 1003-1015. https://doi.org/10.1007/s00704-018-2408-6

The Agricultural Census. (2020). Characteristics of agricultural holdings in 2020. https://stat.gov.pl/en/topics/agriculture-forestry/agricultural-census-2020/

Thier, A. (2020). Ocena stanu zasobów wodnych i analiza nakładów gospodarczych na zaopatrzenie w wodę w Polsce na tle krajów Europejskich. In T. Walczykiewicz (Ed.), Współczesne problemy gospodarki wodnej w kontekście zagospodarowania przestrzennego (pp. 9-26). Warszawa: IMGW-PIB. (in Polish).

Tzanakakis, V. A., Paranychianakis, N. V., & Angelakis, A. N. (2020). Water supply and water scarcity. Water, 12(9), 2347. https://doi.org/10.3390/w12092347

Van der Sterren, M., Rahman, A., & Dennis, G. R. (2012). Implications to stormwater management as a result of lot scale rainwater tank systems: a case study in Western Sydney, Australia. Water Science and Technology, 65(8), 1475-1482. https://doi.org/10.2166/wst.2012.033

Ward, D., & Mckague, K. (2019). Water Requirements of Livestock. https://www.scirp.org/reference/referencespapers?referenceid=2792303

Wójcik, P. (2020). Pobór wody w produkcji zwierzęcej. Woda w rolnictwie. Ekspertyza. Warszawa: Wydawnictwo Polskiego Klubu Ekologicznego Koła Miejskiego w Gliwicach oraz Koalicji Żywa Ziemia. (in Polish).

Yannopoulos, S., Giannopoulou, I., & Kaiafa-Saropoulou, M. (2019). Investigation of the current situation and prospects for the development of rainwater harvesting as a tool to confront water scarcity worldwide. Water, 11(10), 2168. https://doi.org/10.3390/w11102168

Zarzyńska, J., & Zabielski, R. (2020). Adaptacja produkcji zwierzęcej do zmian klimatycznych. In K. Prandecki & M. Burchard-Dziubińska (Eds.), Zmiana klimatu - skutki dla polskiego społeczeństwa i gospodarki (pp. 213-239). Warszawa: Komitet Prognoz “Polska 2000 Plus” PAN. (in Polish).

Ziernicka-Wojtaszek, A., & Kopcińska, J. (2020). Variation in atmospheric precipitation in Poland in the years 2001–2018. Atmosphere, 11(8), 794. https://doi.org/10.3390/atmos11080794

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment

Downloads

Download data is not yet available.