Abstract
The article describes the possibility of using green infrastructure for rainwater management on the example of an existing kindergarten building located in central Poland in the town of Skierniewice in the Łódź Voivodeship. The article shows solutions for the use of green infrastructure objects such as green roofs, infiltration basins and rain gardens, which, in addition to their technical function, have a positive impact on the facility's users. These devices were dimensioned based on rainfall intensity determined using the PMAXTP model for 15-minute rainfall with a probability of occurrence of p=0.2. The individual devices for rainwater management were analysed in terms of reducing rainwater runoff into the sewage system, and the course of calculations for the selection of specific solutions was presented. The findings lead to the conclusion that the implementation of the described solutions enables a reduction in the volume of rainwater discharged into the sewage system by 53%.
References
Almeida, C., Teotónio, I., Silva, C. M., & Cruz, C. O. (2021). Socioeconomic feasibility of green roofs and walls in public buildings: The case study of primary schools in Portugal. The Engineering Economist, 66(1), 27-50. https://doi.org/10.1080/0013791X.2020.1748255
Bisaga, W., Bryła, M., Kaźzmierczak, B., Kielar, R., Kitowski, M., Marosz, M., Miętek, B., Ozga-Zieliński, B., Tokarczyk, T., & Walczykiewicz, T. (2022). Modele Probabilistyczne Opadów Maksymalnych o Określonym Czasie Trwania i Prawdopodobieństwie Przewyższenia. Projekt PMAXTP. Institute of Meteorology and Water ManagementNational Research Institute: Warsaw. (in Polish).
Borel, V., Myers, M., & Giraud, D. (2015). Coastal California Rain Gardens. https://escholarship.org/uc/item/2bm3j1sj
Campisano, A., & Lupia, F. (2017). A dimensionless approach for the urban-scale evaluation of domestic rainwater harvesting systems for toilet flushing and garden irrigation. Urban Water Journal, 14(9), 883-891. https://doi.org/10.1080/1573062X.2017.1279192
Dunnett, N., & Clayden, A. (2007). Rain gardens – Managing water sustainably in the garden and designed landscape. Timber Press. https://www.researchgate.net/publication/230887824_Rain_Gardens_Managing_water_sustainably_in_the_garden_and_designed_landscape
Fundacja Sendzimira. (2025, November 15). Szkoła przyjazna klimatowi. https://sendzimir.org.pl/projekty/szkola-przyjazna-klimatowi (in Polish).
Getter, K. L., & Bradley Rowe, D. (2006). The Role of Extensive Green Roofs in Sustainable Development. HortScience, 41(5), 1276-1285. https://doi.org/10.21273/HORTSCI.41.5.1276
Ioja, C. I., Gradinaru, S. R., Onose, D. A., Vanau, G. O., & Tudor, A. C. (2014). The potential of school green areas to improve urban green connectivity and multifunctionality. Urban Forestry & Urban Greening, 13(4), 704-713. https://doi.org/10.1016/j.ufug.2014.07.002
Jaszczak, A., Vaznonienė, G., & Vaznonis, B. (2018). Green infrastructure spaces as an instrument promoting youth integration and participation in local community. Management Theory and Studies for Rural Business and Infrastructure Development, 40(1), 37-49. https://www.researchgate.net/publication/323817486_GREEN_INFRASTRUCTURE_SPACES_AS_AN_INSTRUMENT_PROMOTING_YOUTH_INTEGRATION_AND_PARTICIPATION_IN_LOCAL_COMMUNITY
Jawgiel, K., & Zajączkowski, D. (2016). Potencjał kampusu UAM Morasko w aspekcie zagospodarowania dachów zielona infrastrukturą. Acta Scientiarum Polonorum Formatio Circumiectus, 15(4), 181-192. https://acta.urk.edu.pl/pdf-102912-34299?filename=POTENCJAL%20KAMPUSU%20UAM.pdf
Karczmarczyk, A., & Mosiej, J. (2011). Racjonalne zagospodarowanie wód opadowych na terenach o zwartej i rozproszonej zabudowie. Ekoinnowacje na Mazowszu. Poradnik transferu technologii w ochronie środowiska. Cz. II - Gospodarka wodna [Dokument elektroniczny]. (in Polish).
Kotowski, A., Wartalska, K., & Nowakowska, M. (2016). Generalized Analytical Method of Overfall Storm Water Retention Reservoir Sizing. Ochrona Środowiska, 38(1), 45-52. https://www.researchgate.net/publication/302579628_Generalized_Analytical_Method_of_Overfall_Storm_Water_Retention_Reservoir_Sizing (in Polish).
Loyola University Chicago. (n.d.). www.luc.edu
Madzia, M. (2019). Reduction of Treated Water Use through Application of Rainwater Tanks in Households. Journal of Ecological Engineering, 20(9), 156-161. https://doi.org/10.12911/22998993/112495
Nowakowska, M., Wartalska, K., Kaźmierczak, B., & Kotowski, A. (2019). Verification of the Stormwater Drainage System Overloads in Wroclaw for an Assessment of Climate Change Effects. Periodica Polytechnica Civil Engineering, 63(2), 641-646. http://dx.doi.org/10.3311/PPci.12668
Okraska, J. (2017). Wielobranżowy projekt budowlany i wykonawczy przedszkola [Projekt]. (in Polish).
Onori, A., Lavau, S., & Fletcher, T. (2018). Implementation as more than installation: a case study of the challenges in implementing green infrastructure projects in two Australian primary schools. Urban Water Journal, 15(9), 911-917. https://doi.org/10.1080/1573062X.2019.1574842
Ozga-Zieliński, B. (Ed.). (2022). Modele probabilistyczne opadów maksymalnych o określonym czasie trwania i prawdopodobieństwie przewyższenia – projekt PMAXTP. Warszawa: Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy. (in Polish).
Pendergrass, A. G., & Hartmann, D. L. (2014). Changes in the Distribution of Rain Frequency and Intensity in Response to Global Warming. Journal of Climate, 27, 8372-8383. http://dx.doi.org/10.1175/JCLI-D-14-00183.s1
Secretariat of the Convention on Biological Diversity. (2009). Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change. https://www.cbd.int/doc/publications/cbd-ts-41-en.pdf
Shakya, R., & Ahiablame, L. (2021). A Synthesis of Social and Economic Benefits Linked to Green Infrastructure. Water, 13(24), 3651. https://doi:10.3390/w13243651
Sidwell Friends. (n.d.). www.sidwell.edu
Siwiec, E., Erlandsen, A. M., & Vennemo, H. (2018). City greening by rain gardens – costs and benefits. Environmental Protection and Natural Resources, 29(1), 1-5. https://doi.org/10.2478/oszn-2018-0001
Słyś, D. (2008). Retencja i infiltracja wód deszczowych. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej. (in Polish).
Słyś, D. (2013). Zrównoważone systemy odwodnienia miast. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne. (in Polish).
Sowińska-Świerkosz, B., & Garcίa, J. (2022). What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nature-Based Solutions, 2, 100009. https://doi.org/10.1016/j.nbsj.2022.100009
Szklarek, S. (2020). Susze już nas nie opuszczą. Wodociągi – Kanalizacja, 6, 8-10. (in Polish).
Szulczewska, B. (2018). Zielona infrastruktura – czy koniec historii? Warszawa: Wydawnictwo PAN. (in Polish).
Teichmann, F., Korjenic, A., Sreckovic, M., Veit, H., & Hartmann, D. (2023). Financing Green Infrastructure in Schools: A Case Study in Austria. Sustainability, 15(20), 14985. https://doi.org/10.3390/su152014985
Wagner, I., & Krauze, K. (2014). Jak bezpiecznie zatrzymać wodę opadową w mieście? Narzędzia techniczne. Zrównoważony Rozwój – Zastosowania nr 5: woda w mieście. Kraków: Fundacja Sendzimira. (in Polish).
Warszawa Wawer. (n.d.). https://wawer.um.warszawa.pl/
Wojciechowska, E., Gajewska, M., & Matej-Łukowicz, K. (2016). Wybrane aspekty zrównoważonego gospodarowania wodami opadowymi na terenie zurbanizowanym. Gdańsk: Politechnika Gdańska. (in Polish).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Economics and Environment