Life cycle assessment of renewable energy sources - key issues. Bibliometric analysis of the literature
PDF

Keywords

Life cycle assessment
renewable energy sources
research directions
bibliometric analysis

How to Cite

Dec, K. (2024). Life cycle assessment of renewable energy sources - key issues. Bibliometric analysis of the literature. Economics and Environment, 89(2), 839. https://doi.org/10.34659/eis.2024.89.2.839

Abstract

The aim of the analysis is to systematise scientific research related to the issue of environmental life cycle assessment (LCA) of renewable energy sources (RES) to identify key thematic areas and future research directions. A systematic literature review was applied based on bibliometric analysis of publications contained in scientific databases. The research request included records containing the term RES or the names of individual technologies in the titles in combination with the term LCA. A bibliometric analysis of over 1,000 publications identified four thematic clusters of research sub-areas and provided examples of publications referring to them. The result was a number of statistics, such as the structure of publication types, the productivity of authors by their nationality and the share of scientific disciplines. The analysis identified the most important publications in the thematic area. A review shows the interdisciplinarity of the research carried out and the relevance of the topic. 

PDF

References

Adedeji, P. A., Akinlabi, S. A., Madushele, N., & Olatunji, O. O. (2020). Potential roles of artificial intelligence in the lci of renewable energy systems. In S.S. Emamian, M. Awang & F. Yusof (Eds.), Advances in Manufacturing Engineering (pp. 275-285). Singapore: Springer. https://doi.org/10.1007/978-981-15-5753-8_26

Agrawal, B., & Tiwari, G. N. (2010). Life cycle cost assessment of building integrated photovoltaic thermal (BIPVT) systems. Energy and Buildings, 42(9), 1472-1481. https://doi.org/10.1016/j.enbuild.2010.03.017

Alberola-Borràs, J.-A., Baker, J. A., De Rossi, F., Vidal, R., Beynon, D., Hooper, K. E. A., Watson, T. M., & Mora-Seró, I. (2018). Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-industrial Production Process. IScience, 9, 542-551. https://doi.org/10.1016/j.isci.2018.10.020

Allouhi, A. (2020). Solar PV integration in commercial buildings for self-consumption based on life-cycle economic/environmental multi-objective optimization. Journal of Cleaner Production, 270, 122375. https://doi.org/10.1016/j.jclepro.2020.122375

Amini Toosi, H., Del Pero, C., Leonforte, F., Lavagna, M., & Aste, N. (2023). Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization. Applied Energy, 334, 120648. https://doi.org/10.1016/j.apenergy.2023.120648

Ansanelli, G., Fiorentino, G., Tammaro, M., & Zucaro, A. (2021). A Life Cycle Assessment of a recovery process from End-of-Life Photovoltaic Panels. Applied Energy, 290, 116727. https://doi.org/10.1016/j.apenergy.2021.116727

Ardente, F., Beccali, G., Cellura, M., & Lo Brano, V. (2005). Life cycle assessment of a solar thermal collector. Renewable Energy, 30(7), 1031-1054. https://doi.org/10.1016/j.renene.2004.09.009

Aryan, V., Font-Brucart, M., & Maga, D. (2018). A comparative life cycle assessment of end-of-life treatment pathways for photovoltaic backsheets. Progress in Photovoltaics: Research and Applications, 26(7), 443-459. https://doi.org/10.1002/pip.3003

Asdrubali, F., Baldinelli, G., D’Alessandro, F., & Scrucca, F. (2015). Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renewable and Sustainable Energy Reviews, 42, 1113-1122. https://doi.org/10.1016/j.rser.2014.10.082

Baharwani, V., Meena, N., Dubey, A., Sharma, D., Brighu, U., & Mathur, J. (2014). Life cycle inventory and assessment of different solar photovoltaic systems. Proceedings of the 2014 Power and Energy Systems Conference: Towards Sustainable Energy, Bangalore, India, 1-5. https://doi.org/10.1109/PESTSE.2014.6805302

Battisti, R., & Corrado, A. (2005). Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology. Energy, 30(7), 952-967. https://doi.org/10.1016/j.energy.2004.07.011

Bayer, P., Rybach, L., Blum, P., & Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable and Sustainable Energy Reviews, 26, 446-463. https://doi.org/10.1016/j.rser.2013.05.039

Brenner, W., Bednar, N., Biermayr, P., & Adamovic, N. (2018). Standardization and Life Cycle Cost Assessment Approach in Circular Economy for Photovoltaic Waste. Proceedings of the 3rd International Conference on Smart and Sustainable Technologies, Split, Croatia, 8448370. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053468706&partnerID=40&md5=f3661e7f0e23130bf5a8eecc0b1231de

Burch, J., Salasovich, J., & Hillman, T. (2005). Cold-climate solar domestic water heating systems: Life-cycle analyses and opportunities for cost reduction. Proceedings of the Solar World Congress 2005: Bringing Water to the World, Including Proceedings of 34th ASES Annual Conference and Proceedings of 30th National Passive Solar Conference, Orlando, United States, 4, 2409-2414. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870591682&partnerID=40&md5=cf403dad2e95739544cb4be66108b791

Burkhardt III, J. J., Heath, G. A., Turchi, C. S., Burkhardt, J. J., Heath, G. A., & Turchi, C. S. (2011). Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environmental Science & Technology, 45(6), 2457-2464. https://doi.org/10.1021/es1033266

Campos-Guzmán, V., García-Cáscales, M. S., Espinosa, N., & Urbina, A. (2019). Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renewable and Sustainable Energy Reviews, 104, 343-366. https://doi.org/10.1016/j.rser.2019.01.031

De Wild-Scholten, M. J., & Alsema, E. A. (2006). Environmental life cycle inventory of crystalline silicon photovoltaic module production. Proceedings of the Materials Research Society Symposium, Boston, United Nations, 895, 59-71. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646386676&partnerID=40&md5=f28588b072fdd09228925190cca0d3e3

Dufo-Lopez, R., Bernal-Agustin, J. L., Yusta-Loyo, J. M., Dominguez-Navarro, J. A., Ramirez-Rosado, I. J., Lujano, J., Aso, I., Dufo-López, R., Bernal-Agustín, J. L., Yusta-Loyo, J. M., Domínguez-Navarro, J. A., Ramírez-Rosado, I. J., Lujano, J., & Aso, I. (2011). Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage. Applied Energy, 88(11), 4033-4041. https://doi.org/10.1016/j.apenergy.2011.04.019

Espinosa, N., García-Valverde, R., Urbina, A., & Krebs, F. C. (2011). A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Solar Energy Materials and Solar Cells, 95(5), 1293-1302. https://doi.org/10.1016/j.solmat.2010.08.020

Fthenakis, V. M. (2004). Life cycle impact analysis of cadmium in CdTe PV production. Renewable and Sustainable Energy Reviews, 8(4), 303-334. https://doi.org/10.1016/j.rser.2003.12.001

Fthenakis, V. M., & Kim, H. C. (2007). Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study. Energy Policy, 35(4), 2549-2557. https://doi.org/10.1016/j.enpol.2006.06.022

Fthenakis, V. M., & Kim, H. C. (2011). Photovoltaics: Life-cycle analyses. Solar Energy, 85(8), 1609-1628. https://doi.org/10.1016/J.SOLENER.2009.10.002

Fthenakis, V. M., Hyung, C. K., & Alsema, E. (2008). Emissions from photovoltaic life cycles. Environmental Science and Technology, 42(6), 2168-2174. https://doi.org/10.1021/ES071763Q

Fthenakis, V., Wang, W., & Kim, H. C. (2009). Life cycle inventory analysis of the production of metals used in photovoltaics. Renewable and Sustainable Energy Reviews, 13(3), 493-517. https://doi.org/10.1016/j.rser.2007.11.012

Ganesan, K., & Valderrama, C. (2022). Anticipatory life cycle analysis framework for sustainable management of end-of-life crystalline silicon photovoltaic panels. Energy, 245, 123207. https://doi.org/10.1016/j.energy.2022.123207

Gołębiowska, J., & Żelazna, A. (2018). Analysis of solar collectors application and the influence of domestic hot water consumption on energy demand in multifamily buildings with implementation of LCA methodology. In S. Nižetić & A. Papadopoulos (Eds.), Green Energy and Technology (pp. 617-624). Cham: Springer. https://doi.org/10.1007/978-3-319-89845-2_43

Gong, J., Darling, S. B., & You, F. (2015). Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts. Energy and Environmental Science, 8(7), 1953-1968. https://doi.org/10.1039/c5ee00615e

Gouveia, J. R., Silva, E., Mata, T. M., Mendes, A., Caetano, N. S., & Martins, A. A. (2020). Life cycle assessment of a renewable energy generation system with a vanadium redox flow battery in a NZEB household. Energy Reports, 6, 87-94. https://doi.org/10.1016/j.egyr.2019.08.024

Greening, B., & Azapagic, A. (2012). Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK. Energy, 39(1), 205-217. https://doi.org/10.1016/j.energy.2012.01.028

Guillén-Lambea, S., Sierra-Pérez, J., García-Pérez, S., Montealegre, A. L., & Monzón-Chavarrías, M. (2023). Energy Self-Sufficiency Urban Module (ESSUM): GIS-LCA-based multi-criteria methodology to analyze the urban potential of solar energy generation and its environmental implications. Science of the Total Environment, 879, 163077. https://doi.org/10.1016/j.scitotenv.2023.163077

Hang, Y., Qu, M., & Zhao, F. (2012). Economic and environmental life cycle analysis of solar hot water systems in the United States. Energy and Buildings, 45, 181-188. https://doi.org/10.1016/j.enbuild.2011.10.057

Hendrickson, T. P., Horvath, A., & Madanat, S. M. (2013). Life-cycle costs and emissions of pareto-optimal residential roof-mounted photovoltaic systems. Journal of Infrastructure Systems, 19(3), 306-314. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000122

Hin, J. N. C., Zmeureanu, R., Cheng Hin, J. N., & Zmeureanu, R. (2014). Optimization of a residential solar combisystem for minimum life cycle cost, energy use and exergy destroyed. Solar Energy, 100, 102-113. https://doi.org/10.1016/j.solener.2013.12.001

Hong, J., Chen, W., Qi, C., Ye, L., & Xu, C. (2016). Life cycle assessment of multicrystalline silicon photovoltaic cell production in China. Solar Energy, 133, 283-293. https://doi.org/10.1016/j.solener.2016.04.013

Jiao, Y., & Månsson, D. (2023). Greenhouse gas emissions from hybrid energy storage systems in future 100% renewable power systems – A Swedish case based on consequential life cycle assessment. Journal of Energy Storage, 57, 106167. https://doi.org/10.1016/j.est.2022.106167

Kaczmarczyk, M. (2019). Methodology and impact categories of environmental life cycle assessment in geothermal energy sector. E3S Web of Conferences, 100, 00032. https://doi.org/10.1051/e3sconf/201910000032

Kalogirou, S. (2009). Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters. Solar Energy, 83(1), 39-48. https://doi.org/10.1016/j.solener.2008.06.005

Karlsdottir, M. R., Palsson, O. P., & Palsson, H. (2010). LCA of combined heat and power production at hellisheidi geothermal power plant with focus on primary energy efficiency. Proceedings of the 12th International Symposium on District Heating and Cooling, Tallinn, Estonia, 184-192. https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952655547&partnerID=40&md5=c9dcdc94bc943f0568faf8a2addf9aee

Khanahmadi, A., Mozaffarilegha, M., Manthouri, M., & Ghaffarpour, R. (2021). A novel economic method of battery modeling in stand-alone renewable energy systems to reduce life cycle costs. Journal of Energy Storage, 44, 103422. https://doi.org/10.1016/j.est.2021.103422

Ko, M. J. (2015). Analysis and optimization design of a solar water heating system based on life cycle cost using a genetic algorithm. Energies, 8(10), 11380-11403. https://doi.org/10.3390/en81011380

Koroneos, C., & Tsarouhis, M. (2012). Exergy analysis and life cycle assessment of solar heating and cooling systems in the building environment. Journal of Cleaner Production, 32, 52-60. https://doi.org/10.1016/j.jclepro.2012.03.012

Košičan, J., Pardo Picazo, M. Á., Vilčeková, S., & Košičanová, D. (2021). Life cycle assessment and economic energy efficiency of a solar thermal installation in a family house. Sustainability, 13(4), 1-20. https://doi.org/10.3390/su13042305

Laleman, R., Albrecht, J., & Dewulf, J. (2011). Life cycle analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation. Renewable and Sustainable Energy Reviews, 15(1), 267-281. https://doi.org/10.1016/j.rser.2010.09.025

Lamnatou, C., Smyth, M., & Chemisana, D. (2019). Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources. Science of the Total Environment, 660, 1576-1592. https://doi.org/10.1016/j.scitotenv.2018.12.461

Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101-111. https://doi.org/10.1016/j.solmat.2016.03.020

Leccisi, E., & Fthenakis, V. (2021). Life cycle energy demand and carbon emissions of scalable single-junction and tandem perovskite PV. Progress in Photovoltaics: Research and Applications, 29(10), 1078-1092. https://doi.org/10.1002/pip.3442

Leckner, M., & Zmeureanu, R. (2011). Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem. Applied Energy, 88(1), 232-241. https://doi.org/10.1016/j.apenergy.2010.07.031

Lim, M. S. W., He, D., Tiong, J. S. M., Hanson, S., Yang, T. C.-K., Tiong, T. J., Pan, G.-T., & Chong, S. (2022). Experimental, economic and life cycle assessments of recycling end-of-life monocrystalline silicon photovoltaic modules. Journal of Cleaner Production, 340, 130796. https://doi.org/10.1016/j.jclepro.2022.130796

Ludin, N. A., Mustafa, N. I., Hanafiah, M. M., Ibrahim, M. A., Asri Mat Teridi, M., Sepeai, S., Zaharim, A., & Sopian, K. (2018). Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 96, 11-28. https://doi.org/10.1016/j.rser.2018.07.048

Lunardi, M. M., Alvarez-Gaitan, J. P., Bilbao, J. I., & Corkish, R. (2018). Comparative life cycle assessment of end-of-life silicon solar photovoltaic modules. Applied Sciences, 8(8), 1396. https://doi.org/10.3390/app8081396

Maceno, M. M. C., Pilz, T. L., & Oliveira, D. R. (2022). Life Cycle Assessment and Circular Economy: A Case Study of a Photovoltaic Solar Panel in Brazil. Journal of Environmental Accounting and Management, 10(1), 91-111. https://doi.org/10.5890/JEAM.2022.03.008

Magrassi, F., Del Borghi, A., Gallo, M., & Marotta, V. (2017). Analysis, comparisons and potential of a Hybrid Solar Power System through a life cycle approach. Proceedings of the 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017, San Diego, United States, 136555. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048598187&partnerID=40&md5=a62dda57b8a6b97ceeac3007b99f1765

Martínez-Corona, J. I., Gibon, T., Hertwich, E. G., Parra-Saldívar, R., Martinez-Corona, J. I., Gibon, T., Hertwich, E. G., & Parra-Saldivar, R. (2017). Hybrid life cycle assessment of a geothermal plant: From physical to monetary inventory accounting. Journal of Cleaner Production, 142, 2509-2523. https://doi.org/10.1016/j.jclepro.2016.11.024

Montanarella, L., & Panagos, P. (2021). The relevance of sustainable soil management within the European Green Deal. Land Use Policy, 100, 104950. https://doi.org/10.1016/J.LANDUSEPOL.2020.104950

Motuzienė, V., Čiuprinskas, K., Rogoža, A., & Lapinskienė, V. (2022). A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies. Energies, 15(22), 8488. https://doi.org/10.3390/en15228488

Mousavi, S. A., Mehrpooya, M., & Delpisheh, M. (2022). Development and life cycle assessment of a novel solar-based cogeneration configuration comprised of diffusion-absorption refrigeration and organic Rankine cycle in remote areas. Process Safety and Environmental Protection, 159, 1019-1038. https://doi.org/10.1016/j.psep.2022.01.067

Muller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., Neuhaus, D. H., Müller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., & Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar Energy Materials And Solar Cells, 230, 111277. https://doi.org/10.1016/j.solmat.2021.111277

Naves, A. X., Barreneche, C., Fernández, A. I., Cabeza, L. F., Haddad, A. N., & Boer, D. (2019). Life cycle costing as a bottom line for the life cycle sustainability assessment in the solar energy sector: A review. Solar Energy, 192, 238-262. https://doi.org/10.1016/j.solener.2018.04.011

Pacca, S., Sivaraman, D., & Keoleian, G. A. (2007). Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy, 35(6), 3316-3326. https://doi.org/10.1016/j.enpol.2006.10.003

Paiho, S., Pulakka, S., & Knuuti, A. (2017). Life-cycle cost analyses of heat pump concepts for Finnish new nearly zero energy residential buildings. Energy and Buildings, 150, 396-402. https://doi.org/10.1016/j.enbuild.2017.06.034

Pal, A., & Kilby, J. (2019). Using Life Cycle Assessment to Determine the Environmental Impacts Caused by Solar Photovoltaic Systems. E3S Web of Conferences, 122, 02005. https://doi.org/10.1051/e3sconf/201912202005

Pastore, T., & Ignatova, M. (2010). Life-Cycle and Cost-Benefit Analyses of Renewable Energy: The Case of Solar Power Systems. In W.W. Clark II (Ed.), Sustainable Communities Design Handbook (pp. 139-148). Oxford: Butterworth-Heinemann. https://doi.org/10.1016/B978-1-85617-804-4.00008-2

Pehnt, M. (2006). Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31(1), 55-71. https://doi.org/10.1016/j.renene.2005.03.002

Peng, J., Lu, L., & Yang, H. (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, 255-274. https://doi.org/10.1016/j.rser.2012.11.035

Raugei, M., Keena, N., Novelli, N., Aly Etman, M., & Dyson, A. (2021). Life cycle assessment of an ecological living module equipped with conventional rooftop or integrated concentrating photovoltaics. Journal of Industrial Ecology, 25(5), 1207-1221. https://doi.org/10.1111/jiec.13129

Ren, M., Mitchell, C. R., & Mo, W. (2020). Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems. Science of the Total Environment, 722, 137932. https://doi.org/10.1016/j.scitotenv.2020.137932

Sajid, M. U., & Bicer, Y. (2021). Comparative life cycle cost analysis of various solar energy-based integrated systems for self-sufficient greenhouses. Sustainable Production and Consumption, 27, 141-156. https://doi.org/10.1016/j.spc.2020.10.025

Saner, D., Juraske, R., Kübert, M., Blum, P., Hellweg, S., & Bayer, P. (2010). Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems. Renewable and Sustainable Energy Reviews, 14(7), 1798-1813. https://doi.org/10.1016/j.rser.2010.04.002

Saoud, A., Harajli, H., & Manneh, R. (2021). Cradle-to-grave life cycle assessment of an air to water heat pump: Case study for the Lebanese context and comparison with solar and conventional electric water heaters for residential application. Journal of Building Engineering, 44, 103253. https://doi.org/10.1016/j.jobe.2021.103253

Shonder, J. A., Martin, M. A., McLain, H. A., & Hughes, P. J. (2000). Comparative analysis of life-cycle costs of geothermal heat pumps and three conventional HVAC systems. ASHRAE Transactions, 106, 00012505. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034460506&partnerID=40&md5=b0ed20c75a81cdc8e82180c12a1c26e4

Silva, S. M., Mateus, R., Marques, L., Ramos, M., & Almeida, M. (2016). Contribution of the solar systems to the nZEB and ZEB design concept in Portugal – Energy, economics and environmental life cycle analysis. Solar Energy Materials and Solar Cells, 156, 59-74. https://doi.org/10.1016/j.solmat.2016.04.053

Sim, M., & Suh, D. (2021). A heuristic solution and multi-objective optimization model for life-cycle cost analysis of solar PV/GSHP system: A case study of campus residential building in Korea. Sustainable Energy Technologies and Assessments, 47, 101490. https://doi.org/10.1016/j.seta.2021.101490

Symeonidou, M. M., Zioga, C., & Papadopoulos, A. M. (2021). Life cycle cost optimization analysis of battery storage system for residential photovoltaic panels. Journal of Cleaner Production, 309, 127234. https://doi.org/10.1016/j.jclepro.2021.127234

Szpilko, D., & Ejdys, J. (2022). European Green Deal — Research Directions. A Systematic Literature Review. Economics and Environment, 81(2), 8-38. https://doi.org/10.34659/eis.2022.81.2.455

Szum, K. (2021). IoT-based smart cities: A bibliometric analysis and literature review. Engineering Management in Production and Services, 13(2), 115-136. https://doi.org/10.2478/EMJ-2021-0017

Thapa, B., Wang, W., & Williams, W. (2022). Life-cycle cost optimization of a solar combisystem for residential buildings in Nepal. Journal of Asian Architecture and Building Engineering, 21(3), 1137-1148. https://doi.org/10.1080/13467581.2021.1928502

Tomasini-Montenegro, C., Santoyo-Castelazo, E., Gujba, H., Romero, R. J., & Santoyo, E. (2017). Life cycle assessment of geothermal power generation technologies: An updated review. Applied Thermal Engineering, 114, 1119-1136. https://doi.org/10.1016/j.applthermaleng.2016.10.074

Tosti, L., Ferrara, N., Basosi, R., & Parisi, M. L. (2020). Complete data inventory of a geothermal power plant for robust cradle-to-grave life cycle assessment results. Energies, 13(11), 2839. https://doi.org/10.3390/en13112839

Uctug, F. G., & Azapagic, A. (2018). Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions. Science of the Total Environment, 622-623, 1202-1216. https://doi.org/10.1016/j.scitotenv.2017.12.057

Varun Bhat, I. K., & Prakash, R. (2009). LCA of renewable energy for electricity generation systems-A review. Renewable and Sustainable Energy Reviews, 13(5), 1067-1073. https://doi.org/10.1016/j.rser.2008.08.004

Vellini, M., Gambini, M., & Prattella, V. (2017). Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels. Energy, 138, 1099-1111. https://doi.org/10.1016/j.energy.2017.07.031

Zeiler, W., Vanderveen, A., Maassen, W., & Maaijen, R. (2017). Green buildings and renewable energy application based on life cycle performance costing. In A. Sayigh (Ed.), Mediterranean Green Buildings and Renewable Energy (pp. 73-87). Cham: Springer. https://doi.org/10.1007/978-3-319-30746-6_6

Zhai, P., & Williams, E. D. (2010). Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environmental Science and Technology, 44(20), 7950-7955. https://doi.org/10.1021/es1026695

Zheng, N., Zhang, H., Duan, L., & Wang, Q. (2023). Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method. Energy, 265, 126343. https://doi.org/10.1016/j.energy.2022.126343

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment

Downloads

Download data is not yet available.