Electricity in organic and conventional farms - economic value of environmental damage
PDF

Keywords

valuation of environmental damage
Environmental Prices method
electricity
agricultural production
photovoltaics

How to Cite

Sobolewska, A., Bukowski, M., Komorowska, D., & Majewski, J. (2025). Electricity in organic and conventional farms - economic value of environmental damage. Economics and Environment, 91(4), 803. https://doi.org/10.34659/eis.2024.91.4.803

Abstract

The aim of this study was to determine the economic value of the environmental impact of electricity used in agricultural production in organic and conventional farms in Poland in relation to cropped area and production value. This study investigated the use of electricity from the grid and that generated using photovoltaic panels. Farm models were constructed based on FADN data. Environmental damage was evaluated by applying the Environmental Prices method with the use of the SimaPro 9.3 program. Results were expressed in prices of 2022. The environmental impact of electricity used in organic farms investigated in this study amounted to 2267 euro/ha and 31.14 euro/1000 euro of production value, while in conventional farms, it was 32.33 euro/ha and 19.27 euro/1000 euro of production value when only energy from the grid was used. In turn, the use of energy generated by photovoltaic panels made it possible to considerably reduce environmental pressure. In the case of organic farms, the recorded indexes were 1.68 euro/ha and 2.31 euro/1000 euro of production value, whereas, in conventional farms, it was 2.72 euro/ha and 1.62 euro/1000 euro of production value. These results indicate that the use of electricity for production in organic farms generates less environmental damage than in the case of conventional farms per unit area, whereas, for the respective figures in relation to production value, an opposite relationship was found.

PDF

References

Adegbeye, M. J., Reddy, P. R. K., Obaisi, A. I., Elghandour, M. M. M. Y., Oyebamiji, K. J., Salem, A. Z. M., Morakinyo-Fasipe, O. T., Cipriano-Salazar, M., & Camacho-Díaz, L. M. (2020). Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations - An overview. Journal of Cleaner Production, 242, 118319. https://doi.org/10.1016/j.jclepro.2019.118319

Aguilera, E., Guzmán, G., & Alonso, A. (2015). Greenhouse gas emissions from conventional and organic cropping systems in Spain. II. Fruit tree orchards. Agronomy for Sustainable Development, 35, 725-737. https://doi.org/10.1007/s13593-014-0265-y

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. https://www.fao.org/3/ap106e/ap106e.pdf

Alvarez, R. (2022). Comparing productivity of organic and conventional farming systems: a quantitative review. Archives of Agronomy and Soil Science, 68(14), 1947-1958. https://doi.org/10.1080/03650340.2021.1946040

Amadei, A. M., De Laurentiis, V., & Sala, S. (2021). A review of monetary valuation in life cycle assessment: State of the art and future needs. Journal of Cleaner Production, 329, 129668. https://doi.org/10.1016/j.jclepro.2021.129668

Arendt, R., Bachmann, T. M., Motoshita, M., Bach, V., & Finkbeiner, M. (2020). Comparison of Different Monetization Methods in LCA: A Review. Sustainability, 12(24), 10493. https://doi.org/10.3390/su122410493

Arvesen, A., & Hertwich, E. G. (2012). Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs. Renewable and Sustainable Energy Reviews, 16(8), 5994-6006. https://doi.org/10.1016/j.rser.2012.06.023

Aulakh, C. S., Sharma, S., Thakur, M., & Kaur, P. (2022). A review of the influences of organic farming on soil quality, crop productivity and produce quality. Journal of Plant Nutrition, 45(12), 1884-1905. https://doi.org/10.1080/01904167.2022.2027976

Aznar-Sánchez, J. A., Piquer-Rodríguez, M., Velasco-Muñoz, J. F., & Manzano-Agugliaro, F. (2019). Worldwide research trends on sustainable land use in agriculture. Land Use Policy, 87, 104069. https://doi.org/10.1016/j.landusepol.2019.104069

Badgley, C., & Perfecto, I. (2007). Can organic agriculture feed the world? A review of the research. Renewable Agriculture and Food Systems, 22(2), 80-86. https://doi.org/10.1017/S1742170507001986

Bukowski, M., Majewski, J., & Sobolewska, A. (2020). Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland. Energies, 14(1), 126. https://doi.org/10.3390/en14010126

Bukowski, M., Majewski, J., & Sobolewska, A. (2021). Macroeconomic efficiency of photovoltaic energy production in Polish farms. Energies, 14(18), 5721. https://doi.org/10.3390/en14185721

Bukowski, M., Majewski, J., Sobolewska, A., Stawicka, E., & Suchoń, A. (2022). Wybrane ekonomiczne i prawne aspekty wytwarzania energii z instalacji fotowoltaicznych w gospodarstwach rolnych województwa mazowieckiego. Warszawa: Wydawnictwo SGGW. (in Polish).

Chabert, A., & Sarthou, J. P. (2020). Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agriculture, Ecosystems & Environment, 292, 106815. https://doi.org/10.1016/j.agee.2019.106815

De Bruyn, S., Bijleveld, M., de Graaff, L., Schep, E., Schroten, A., Vergeer, R., & Ahdour, S. (2018). Environmental Prices Handbook. https://cedelft.eu/wp-content/uploads/sites/2/2021/04/CE_Delft_7N54_Environmental_Prices_Handbook_EU28_version_Def_VS2020.pdf

Du Pisani, J. A. (2006). Sustainable development – historical roots of the concept. Environmental Sciences, 3(2), 83-96. https://doi.org/10.1080/15693430600688831

Durán-Lara, E. F., Valderrama, A., & Marican, A. (2020). Natural Organic Compounds for Application in Organic Farming. Agriculture, 10(2), 41. https://doi.org/10.3390/agriculture10020041

Durham, T. C., & Mizik, T. (2021). Comparative economics of conventional, organic, and alternative agricultural production systems. Economies, 9(2), 64. https://doi.org/10.3390/economies9020064

Eldh, P., & Johansson, J. (2006). Weighting in LCA based on ecotaxes-development of a mid-point method and experiences from case studies. The International Journal of Life Cycle Assessment, 11, 81-88.

European Commission. (n.d.). FADN Database. https://agridata.ec.europa.eu/extensions/FarmEconomyFocus/FADNDatabase.html

Euro-pln.pl. (2023, June 20). Kurs euro 2022 rok. https://eur-pln.pl/2022/ (in Polish).

Faber, A., & Jarosz, Z. (2023). Charakterystyka zrównoważenia rozwoju biogospodarki w Polsce - wymiar ekologiczny. Zeszyty Naukowe SGGW w Warszawie - Problemy Rolnictwa Światowego, 23(1), 4-18. https://doi.org/10.22630/PRS.2023.23.1.1 (in Polish).

Fetting, C. (2020). The European green deal. https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf

Flam, H., & Hassler, J. (2023). Introduction: EU climate policy and Fit for 55. Nordic Economic Policy Review. https://pub.norden.org/nord2023-001/introduction-eu-climate-policy-and-fit-for-55.html

Floriańczyk, Z., Malanowska, B., Osuch, D., & Wójcik, M. (2024). Opis realizacji planu wyboru próby gospodarstw rolnych dla Polskiego FADN w 2024 roku. Warszawa: Wydawnictwo IERiGŻ PIB. (in Polish).

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a Cultivated Planet. Nature, 478, 337-342. https://doi.org/10.1038/nature10452

Gamage, A., Gangahagedara, R., Gamage, J., Jayasinghe, N., Kodikara, N., Suraweera, P., & Merah, O. (2023). Role of organic farming for achieving sustainability in agriculture. Farming System, 1(1), 100005. https://doi.org/10.1016/j.farsys.2023.100005

Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Sociaty B, 369, 20120273. http://doi.org/10.1098/rstb.2012.0273

Goraj, L., & Mańko, S. (2009). Rachunkowość i analiza ekonomiczna w indywidualnym gospodarstwie rolnym. Warszawa: Difin. (in Polish).

GUS. (2023, June 20). Half-yearly price indices of consumer goods and services from 1989. https://stat.gov.pl/en/topics/prices-trade/price-indices/price-indices-of-consumer-goods-and-services/half-yearly-price-indices-of-consumer-goods-and-services-from-1989/

Han, H., Arbuckle, J. G., & Grudens-Schuck, N. (2021). Motivations, goals, and benefits associated with organic grain farming by producers in Iowa, U.S. Agricultural Systems, 191, 103175. https://doi.org/10.1016/j.agsy.2021.103175

Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., Bergesen, J. D., Ramirez, A., Vega, M. I., & Shi, L. (2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proceedings of the National Academy of Sciences, 112(20), 6277-6282. https://doi.org/10.1073/pnas.1312753111

Hutchison, J. R., Widder, M. W., Brooks, S. M., Brennan, L. M., Souris, L., Divito, V. T., van der Schalie, W. H., & Ozanich, R. M. (2019). Consistent production of chlorine-stressed bacteria from non-chlorinated secondary sewage effluents for use in the U.S. Environmental Protection Agency Alternate Test Procedure protocol. Journal of Microbiological Methods, 163, 105651. https://doi.org/10.1016/j.mimet.2019.105651

Jakobs, A., Schulte, S., & Pauliuk, S. (2021). Price variance in hybrid-LCA leads to significant uncertainty in carbon footprints. Frontiers in Sustainability, 2, 666209

Józwiak, W. (1998). Efektywność gospodarowania w rolnictwie. Encyklopedia agrobiznesu. Warszawa: Fundacja Innowacyjna. (in Polish).

Józwiak, W., & Kagan, A. (2008). Gospodarstwa towarowe a gospodarstwa wielkotowarowe. Roczniki Nauk Rolniczych, 95(1), 22-30. https://doi.org/10.22630/RNR.2008.95.1.3 (in Polish).

Kociszewski, K. (2022). Perspectives of Polish organic farming development in the aspect of the European Green Deal. Economics and Environment, 81(2), 154-167. https://doi.org/10.34659/eis.2022.81.2.461

Kougias, I., Taylor, N., Kakoulaki, G., & Jäger-Waldau, A. (2021). The role of photovoltaics for the European Green Deal and the recovery plan. Renewable and Sustainable Energy Reviews, 144, 111017. https://doi.org/10.1016/j.rser.2021.111017

Krauss, M., Berner, A., Perrochet, F., Frei, R., Niggli, U., & Mäder, P. (2020). Enhanced soil quality with reduced tillage and solid manures in organic farming – a synthesis of 15 years. Scientific Reports, 10, 4403. https://doi.org/10.1038/s41598-020-61320-8

Kuczuk, A. (2015). Cost-and energy–related determinants for conventional and organic cultivation of winter wheat. Ekonomia i Środowisko, 52(1), 110-123. https://bibliotekanauki.pl/articles/96145 (in Polish).

Laurent, A., & Espinosa, N. (2015). Environmental impacts of electricity generation at global, regional and national scales in 1980-2011: What can we learn for future energy planning? Energy and Environmental Sciences, 8(3), 689-701. https://doi.org/10.1039/C4EE03832K

Laurent, A., Espinosa, N., & Hauschild, M. Z. (2018). LCA of Energy Systems. In M. Hauschild, R. Rosenbaum & S. Olsen (Eds.), Life Cycle Assessment. Theory and Practice (pp. 633-668). Cham: Springer. https://doi.org/10.1007/978-3-319-56475-3_26

Le Campion, A., Oury, F. X., Heumez, E., & Rolland, B. (2020). Conventional versus organic farming systems: dissecting comparisons to improve cereal organic breeding strategies. Organic Agriculture, 10, 63-74. https://doi.org/10.1007/s13165-019-00249-3

Li, Z., Yano, A., Cossu, M., Yoshioka, H., Kita, I., & Ibaraki, Y. (2018). Electrical energy producing greenhouse shading system with a semi-transparent photovoltaic blind based on micro-spherical solar cells. Energies, 11(7), 1681. https://doi.org/10.3390/en11071681

Lichtfouse, E., Navarrete, M., Debaeke, P., Souchère, V., Alberola, C., & Ménassieu, J. (2009). Agronomy for Sustainable Agriculture: A Review. Agronomy for Sustainable Development, 29, 1-7. https://doi.org/10.1007/978-90-481-2666-8_1

Loizou, E., Karelakis, C., Galanopoulos, K., & Mattas, K. (2019). The role of agriculture as a development tool for a regional economy. Agricultural Systems, 173, 482-490. https://doi.org/10.1016/j.agsy.2019.04.002

Łuczka, W. (2021). Procesy rozwojowe rolnictwa ekologicznego i ich ekonomiczno-społeczne warunkowania. Warszawa: Wydawnictwo Naukowe Scholar. (in Polish).

Mabon, L., Shih, W. Y., Kondo, K., Kanekiyo, H., & Hayabuchi, Y. (2019). What is the role of epistemic communities in shaping local environmental policy? Managing environmental change through planning and greenspace in Fukuoka City, Japan. Geoforum, 104, 158-169. https://doi.org/10.1016/j.geoforum.2019.04.024

Maśloch, P., Maśloch, G., Kuźmiński, Ł., Wojtaszek, H., & Miciuła, I. (2020). Autonomous energy regions as a proposed choice of selecting selected EU regions – Aspects of their creation and management. Energies, 13(23), 6444. https://doi.org/10.3390/en13236444

Meemken, E. M., & Qaim, M. (2018). Organic agriculture food security and the environment. Annual Review of Resource Economics, 10(1), 39-63. https://doi.org/10.1146/annurev-resource-100517-023252

Mondelaers, K., Aertsens, J., & Van Huylenbroeck, G. (2009). A meta‐analysis of the differences in environmental impacts between organic and conventional farming. British food journal, 111(10), 1098-1119. https://doi.org/10.1108/00070700910992925

Niggli, U. (2015). Sustainability of organic food production: Challenges and innovations. Proceedings of the Nutrition Society, 74(1), 83-88. https://doi.org/10.1017/S0029665114001438

Omer, A. M. (2008). Energy, environment and sustainable development. Renewable and Sustainable Energy Reviews, 12(9), 2265-2300. https://doi.org/10.1016/j.rser.2007.05.001

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. http://dx.doi.org/10.1080/23311916.2016.1167990

Pawłowska-Tyszko, J., Osuch, D., & Płonka, R. (2023). Wyniki Standardowe 2022 uzyskane przez gospodarstwa rolne uczestniczące w Polskim FADN. Część I. Wyniki Standardowe. Warszawa: Wydawnictwo IERiGŻ PIB. (in Polish).

Peng, B., Sheng, X., & Wei, G. (2020). Does environmental protection promote economic development? From the perspective of coupling coordination between environmental protection and economic development. Environmental Science and Pollution Research, 27, 39135-39148. https://doi.org/10.1007/s11356-020-09871-1

Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. International Journal of Environmental Research and Public Healt, 15(1), 16. https://doi.org/10.3390/ijerph15010016

Pizzol, M., Weidema, B., Brandão, M., & Osset, P. (2015). Monetary valuation in life cycle assessment: a review. Journal of Cleaner Production, 86, 170-179. https://doi.org/10.1016/j.jclepro.2014.08.007

Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2), 1-8. https://doi.org/10.1038/nplants.2015.221

Rokicki, T., Perkowska, A., Klepacki, B., Bórawski, P., Bełdycka-Bórawska, A., & Michalski, K. (2021). Changes in energy consumption in agriculture in the EU countries. Energies, 14(6), 1570. https://doi.org/10.3390/en14061570

Runowski, H. (2012). Rolnictwo ekologiczne w Polsce – stan i perspektywy. In S. Zegar (Ed.), Z badań nad rolnictwem społecznie zrównoważonym (pp. 38-78). Warszawa: IERiGŻ-PIB. (in Polish).

Samandi, S. (2017). The Social Costs of Electricity Generation – Categorising Different Types of Costs and Evaluating Their Respective Relevance. Energies, 10(3), 356. https://doi.org/10.3390/en10030356

Sandhu, H. S., Wratten, S. D., & Cullen, R. (2010). The role of supporting ecosystem services in conventional and organic arable farmland. Ecological Complexity, 7(3), 302-310. https://doi.org/10.1016/j.ecocom.2010.04.006

Sapbamrer, R., & Thammachai, A. (2021). A Systematic Review of Factors Influencing Farmers’ Adoption of Organic Farming. Sustainability, 13(7), 3842. https://doi.org/10.3390/su13073842

Seufert, V., & Ramankutty, N. (2017). Many shades of gray – The context-dependent performance of organic agriculture. Sciences Advances, 3(3), e1602638. https://doi.org/10.1126/sciadv.1602638

Siddi, M. (2020). The European Green Deal: assessing its current state and future implementation. https://www.fiia.fi/wp-content/uploads/2020/05/wp114_european-green-deal.pdf

Sieczko, L., & Kołoszko-Chomentowska, Z. (2023). Relationships between economic and ecological indicators and greenhouse gas emissions: The perspective of farms in Poland at the regional level. Economics and Environment, 86(3), 382-395. https://doi.org/10.34659/eis.2023.86.3.612

Smith, O. M., Cohen, A. L., Rieser, C. J., Davis, A. G., Taylor, J. M., Adesanya, A. W., Jones, M. S., Meier, A. R., Reganold, J. P., Orpet, R. J., Northfield, T. D., & Crowder, D. W. (2019). Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Frontiers in Sustainable Food Systems, 3, 82. https://doi.org/10.3389/fsufs.2019.00082

Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P., Rounsevell, M., Woods, J., Stehfest, E., & Bellarby, J. (2010). Competition for land. Philosophical Transactions of the Royal Society B - Biological Sciences, 365, 2941-2957. https://doi.org/10.1098/rstb.2010.0127

Solarin, S. A. (2020). An environmental impact assessment of fossil fuel subsidies in emerging and developing economies. Environmental Impact Assessment Review, 85, 106443. https://doi.org/10.1016/j.eiar.2020.106443

Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T., & Mierzwa-Hersztek, M. (2021). Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production, 311, 127461. https://doi.org/10.1016/j.jclepro.2021.127461

Thiesen, J., Christensen, T. S., Kristensen, T. G., Andersen, R. D., Brunoe, B., Gregersen, T. K., ... & Weidema, B. P. (2008). Rebound effects of price differences. The International Journal of Life Cycle Assessment, 13, 104-114.

Tilman, D., Balzer, Ch., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260-20264. https://doi.org/10.1073/pnas.1116437108

Trading Economics. (2023, June 20). European Union Consumer Price Index (CPI). https://tradingeconomics.com/european-union/consumer-price-index-cpi

Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C., & Batáry, P. (2021). Beyond organic farming – harnessing biodiversity-friendly landscapes. Trends in Ecology and Evolution, 36(10), 919-930. https://doi.org/10.1016/j.tree.2021.06.010

Tyburski, J., & Żakowska-Biemans, S. (2007). Wprowadzenie do rolnictwa ekologicznego. Warszawa: Wydawnictwo SGGW. (in Polish).

Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In P. Chowdhary, A. Raj, D. Verma & Y. Akhter (Eds.), Microorganisms for Sustainable Environment and Health (pp. 419-429). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00021-8

Valle, P. O., Pintassilgo, P., Matias, A., & André, F. (2012). Tourist attitudes towards an accommodation tax earmarked for environmental protection: a survey in the Algarve. Tourism Management, 33(6), 1408-1416. https://doi.org/10.1016/j.tourman.2012.01.003

Van Mansvelt, J. D., Stobbelaar, D. J., & Hendriks, K. (1998). Comparison of landscape features in organic and conventional farming systems. Landscape and urban planning, 41(3-4), 209-227. https://doi.org/10.1016/S0169-2046(98)00060-7

Venkat, K. (2012). Comparison of twelve organic and conventional farming systems: a life cycle greenhouse gas emissions perspective. Journal of Sustainable Agriculture, 36(6), 620-649. https://doi.org/10.1080/10440046.2012.672378

Verbruggen, A., Laes, E., & Woerdman, E. (2019). Anatomy of emissions trading systems: what is the EU ETS? Environmental Science & Policy, 98, 11-19. https://doi.org/10.1016/j.envsci.2019.05.001

Yu, M., & Wiedmann, T. (2018). Implementing hybrid LCA routines in an input–output virtual laboratory. Journal of Economic Structures, 7(1), 33.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment

Downloads

Download data is not yet available.