Abstract
Despite the increasing number of studies analysing sustainability performance in energy-related field, most of the existing papers present the results of particular dimensions separately. A number of methods have been identified to integrate individual LCSA indicators and determine one final sustainability score which could be a relevant support for decision-makers to rank scenarios being compared at the interpretation phase. In the current stage, none of the proposed methods seem to be in a leading position. The integration of sustainability indicators still suffers from the lack of harmonisation concerning the selection and definition of impact categories to be analysed, as well as specific procedures that would allow the results to be reliably compared. The procedures often assume arbitrarily determined weights of importance for aggregating environmental, economic and social scores, which can raise controversy. The development of noncontroversial methods to integrate LCSA indicators is also recommended from the perspective of future standardisation.
References
Baindu Gobio-Thomas, L., Darwish, M., & Stojceska, V. (2023). Review on the economic impacts of solar thermal power plants. Thermal Science and Engineering Progress, 46, 102224. https://doi.org/10.1016/j.tsep.2023.102224
Balasbaneh, A. T., & Marsono, A. K. B. (2020). Applying multi-criteria decision-making on alternatives for earth-retaining walls: LCA, LCC, and S-LCA. International Journal of Life Cycle Assessment, 25(11), 2140-2153. https://doi.org/10.1007/s11367-020-01825-6
Balasbaneh, A. T., Sher, W., Madun, A., & Ashour, A. (2024). Life cycle sustainability assessment of alternative green roofs – A systematic literature review. Building and Environment, 248, 111064. https://doi.org/10.1016/j.buildenv.2023.111064
Baldoni, E., Coderoni, S., Di Giuseppe, E., D’Orazio, M., Esposti, R., & Maracchini, G. (2021). A Software Tool for a Stochastic Life Cycle Assessment and Costing of Buildings’ Energy Efficiency Measures. Sustainability, 13(14), 7975. https://doi.org/10.3390/su13147975
Benoît, C., & Mazijn, B. (2009). Guidelines for social life cycle assessment of products. https://www.lifecycleinitiative.org/wp-content/uploads/2012/12/2009%20-%20Guidelines%20for%20sLCA%20-%20EN.pdf
Bierer, A., Götze, U., Meynerts, L., & Sygulla, R. (2015). Integrating life cycle costing and life cycle assessment using extended material flow cost accounting. Journal of Cleaner Production, 108, 1289-1301. https://doi.org/10.1016/j.jclepro.2014.08.036
Bueno, C., Zwicky Hauschild, M., Rossignolo, J. A., Ometto, A. R., & Crespo Mendes, N. (2016). Sensitivity analysis of the use of Life Cycle Impact Assessment methods: a case study on building materials. Journal of Cleaner Production, 112, 2208-2220. https://doi.org/10.1016/j.jclepro.2015.10.006
Colocci, A., Gioia, E., Casareale, C., Marchetti, N., & Marincioni, F. (2023). The role of sustainable energy and climate action plans: Synergies with regional sustainable development strategies for a local 2030 agenda. Environmental Development, 47, 100894. https://doi.org/10.1016/j.envdev.2023.100894
Communication from The Commission to The European Parliament, The European Council, The Council, The European Economic and Social Committee, The Committee of The Regions and The European Investment Bank, A Clean Planet for all, A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy, Pub. L. No. 52018DC0773 (2018). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52018DC0773
Communication from The Commission to The European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of The Regions, The European Green Deal, Pub. L. No. 52019DC0640 (2019). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52019DC0640
Costa, D., Quinteiro, P., & Dias, A. C. (2019). A systematic review of life cycle sustainability assessment: Current state, methodological challenges, and implementation issues. Science of The Total Environment, 686, 774-787. https://doi.org/10.1016/j.scitotenv.2019.05.435
Covenant of Mayors. (2018). Paris Agreement & 2030 Agenda For Sustainable Development. Annual report. https://eu-mayors.ec.europa.eu/ga/node/212
Crippa, J., & Ugaya, C. M. L. (2023). Optimization in Life Cycle Sustainability Assessment (LCSA): A Systematic Literature Review. Journal of Management and Sustainability, 13(2). https://doi.org/10.5539/jms.v13n2p68
D’Onofrio, R., Camaioni, C., & Mugnoz, S. (2023). Local Climate Adaptation and Governance: The Utility of Joint SECAP Plans for Networks of Small – Medium Italian Municipalities. Sustainability, 15(11), 8738. https://doi.org/10.3390/su15118738
D’Orso, G., Migliore, M., Peri, G., & Rizzo, G. (2020). Using AHP methodology for prioritizing the actions in the transport sector in the frame of SECAPs. Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 1-6. https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160591
D’Orso, G., Migliore, M., Peri, G., & Rizzo, G. (2023). A Hybrid AHP Approach and GIS-Based Methods as Fundamental Tools in the SECAP’s Decision-Making Process. Sustainability, 15(4), 3660. https://doi.org/10.3390/su15043660
Di Battista, D., Barchiesi, C., Di Paolo, L., Abbate, S., Sorvillo, S., Cinocca, A., Carapellucci, R., Ciamponi, D., Cardone, D., Corroppolo, S., & Cipollone, R. (2021). The reporting of sustainable energy action plans of municipalities: Methodology and results of case studies from the abruzzo region. Energies, 14(18), 5932. https://doi.org/10.3390/en14185932
Directive 2009/29/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 2003/87/EC so as to improve and extend the greenhouse gas emission allowance trading scheme of the Community, Pub. L. No. 32009L0029, 140 OJ L (2009). https://eur-lex.europa.eu/eli/dir/2009/29/oj/eng
Dong, Y., Ng, S. T., & Liu, P. (2023). Towards the principles of life cycle sustainability assessment: An integrative review for the construction and building industry. Sustainable Cities and Society, 95, 104604. https://doi.org/10.1016/j.scs.2023.104604
Ekener, E., Hansson, J., Larsson, A., & Peck, P. (2018). Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting - Tested on biomass based and fossil transportation fuels. Journal of Cleaner Production, 181, 337-351. https://doi.org/10.1016/j.jclepro.2018.01.211
Fauzi, R. T., Lavoie, P., Sorelli, L., Heidari, M. D., & Amor, B. (2019). Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment. Sustainability, 11(3), 636. https://doi.org/10.3390/su11030636
Fresner, J., Krenn, C., Morea, F., Mercatelli, L., Alessandrini, S., & Tomasi, F. (2019). Harmonisation of energy and sustainable urban mobility planning: Guidelines for the harmonization of energy and mobility planning. http://www.simpla-project.eu/media/82401/simpla-guidelines-v4.pdf
Galán-Martín, Á., Guillén-Gosálbez, G., Stamford, L., & Azapagic, A. (2016). Enhanced data envelopment analysis for sustainability assessment: A novel methodology and application to electricity technologies. Computers and Chemical Engineering, 90, 188-200. https://doi.org/10.1016/j.compchemeng.2016.04.022
Gasa, G., Prieto, C., Lopez-Roman, A., & Cabeza, L. F. (2022). Life cycle assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with different storage capacity in molten salts. Journal of Energy Storage, 53, 105219. https://doi.org/10.1016/j.est.2022.105219
Gavaldà, O., González, A., Raya, M., Owen, M., Kemausuor, F., & Arranz-Piera, P. (2022). Life Cycle Cost analysis for industrial bioenergy projects: Development of a simulation tool and application to three demand sectors in Africa. Energy Reports, 8, 2908-2923. https://doi.org/10.1016/j.egyr.2022.02.016
Gluch, P., & Baumann, H. (2004). The life cycle costing (LCC) approach: A conceptual discussion of its usefulness for environmental decision-making. Building and Environment, 39(5), 571-580. https://doi.org/10.1016/j.buildenv.2003.10.008
Grubert, E. (2017). The Need for a Preference-Based Multicriteria Prioritization Framework in Life Cycle Sustainability Assessment. Journal of Industrial Ecology, 21(6), 1522-1535. https://doi.org/10.1111/jiec.12631
Gulcimen, S., Aydogan, E. K., & Uzal, N. (2021). Life cycle sustainability assessment of a light rail transit system: Integration of environmental, economic, and social impacts. Integrated Environmental Assessment and Management, 17(5), 1070-1082. https://doi.org/10.1002/ieam.4428
Guo, Z., Ge, S., Yao, X., Li, H., & Li, X. (2019). Life cycle sustainability assessment of pumped hydro energy storage. International Journal of Energy Research, 44(1), 192-204. https://doi.org/10.1002/er.4890
Hayatina, I., Auckaili, A., & Farid, M. (2023). Review on the Life Cycle Assessment of Thermal Energy Storage Used in Building Applications. Energies, 16(3), 1170. https://doi.org/10.3390/en16031170
Hofstetter, P., Braunschweig, A., Mettier, T., Müller-Wenk, R., & Tietje, O. (1999). The Mixing Triangle: Correlation and Graphical Decision Support for LCA-based Comparisons. Journal of Industrial Ecology, 3(4), 97-115. https://doi.org/10.1162/108819899569584
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-y
International Organization for Standardization. (2006a). Environmental management — Life cycle assessment — Principles and framework (ISO Standard No. 14040:2006). https://www.iso.org/standard/37456.html
International Organization for Standardization. (2006b). Environmental management — Life cycle assessment — Requirements and guidelines (ISO Standard No. 14044:2006). https://www.iso.org/standard/38498.html
Jekabsone, A., Marín, J. P. D., Martins, S., Rosa, M., & Kamenders, A. (2021). Upgrade from SEAP to SECAP: Experience of 6 European Municipalities. Environmental and Climate Technologies, 25(1), 254-264. https://doi.org/10.2478/rtuect-2021-0018
Joachimiak-Lechman, K. (2014). Środowiskowa ocena cyklu życia (LCA) i rachunek kosztów cyklu życia (LCC). Aspekty porównawcze. Ekonomia i Środowisko, 48(1), 80-96. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-b499e98a-ae4e-443e-9275-a3494c465943 (in Polish).
Jørgensen, A., Le Bocq, A., Nazarkina, L., & Hauschild, M. (2008). Methodologies for Social Life Cycle Assessment. International Journal of Life Cycle Assessment, 13(2), 96-103. https://doi.org/10.1065/lca2007.11.367
Keller, H., Rettenmaier, N., & Reinhardt, G. A. (2015). Integrated life cycle sustainability assessment - A practical approach applied to biorefineries. Applied Energy, 154, 1072-1081. https://doi.org/10.1016/j.apenergy.2015.01.095
Kluczek, A. (2019). An energy-led sustainability assessment of production systems – An approach for improving energy efficiency performance. International Journal of Production Economics, 216, 190-203. https://doi.org/10.1016/j.ijpe.2019.04.016
Larsen, V. G., Tollin, N., Sattrup, P. A., Birkved, M., & Holmboe, T. (2022). What are the challenges in assessing circular economy for the built environment? A literature review on integrating LCA, LCC and S-LCA in life cycle sustainability assessment, LCSA. Journal of Building Engineering, 50, 104203. https://doi.org/10.1016/j.jobe.2022.104203
Leroy-Parmentier, N., Valdivia, S., Loubet, P., & Sonnemann, G. (2023). Alignment of the life cycle initiative’s “principles for the application of life cycle sustainability assessment” with the LCSA practice: A case study review. International Journal of Life Cycle Assessment, 28(6), 704-740. https://doi.org/10.1007/s11367-023-02162-0
Lucchetti, M. C., Arcese, G., Traverso, M., & Montauti, C. (2018). S-LCA applications: A case studies analysis. E3S Web of Conferences, 74, 10009. https://doi.org/10.1051/e3sconf/20187410009
Martinez-Hernandez, E., Sadhukhan, J., Aburto, J., Amezcua-Allieri, M. A., Morse, S., & Murphy, R. (2022). Modelling to analyse the process and sustainability performance of forestry-based bioenergy systems. Clean Technologies and Environmental Policy, 24(6), 1709-1725. https://doi.org/10.1007/s10098-022-02278-1
Matak, N., Mimica, M., & Krajačić, G. (2022). Optimising the Cost of Reducing the CO2 Emissions in Sustainable Energy and Climate Action Plans. Sustainability, 14(6), 3462. https://doi.org/10.3390/su14063462
Norris, G. A. (2001). Integrating Life Cycle Cost Analysis and LCA. International Journal of Life Cycle Assessment, 6, 118-120. https://doi.org/10.1007/BF02977849
Padilla-Rivera, A., Hannouf, M., Assefa, G., & Gates, I. (2023). A systematic literature review on current application of life cycle sustainability assessment: A focus on economic dimension and emerging technologies. Environmental Impact Assessment Review, 103, 107268. https://doi.org/10.1016/j.eiar.2023.107268
Ren, J., Ren, X., Liang, H., Dong, L., Zhang, L., Luo, X., Yang, Y., & Gao, Z. (2017). Multi-actor multi-criteria sustainability assessment framework for energy and industrial systems in life cycle perspective under uncertainties. Part 1: weighting method. International Journal of Life Cycle Assessment, 22(9), 1397-1405. https://doi.org/10.1007/s11367-016-1251-1
Settanni, E., Tassielli, G., & Notarnicola, B. (2011). An Input–Output Technological Model of Life Cycle Costing: Computational Aspects and Implementation Issues in a Generalised Supply Chain Perspective. In R.L. Burritt, S. Schaltegger, M. Bennett, T. Pohjola & M. Csutora (Eds.), Environmental Management Accounting and Supply Chain Management (pp. 55-109). Cham: Springer. www.springer.com/series/5887
Swarr, T. E., Hunkeler, D., Klöpffer, W., Pesonen, H. L., Ciroth, A., Brent, A. C., & Pagan, R. (2011). Environmental life-cycle costing: a code of practice. International Journal of Life Cycle Assessment, 16(5), 389-391. https://doi.org/10.1007/s11367-011-0287-5
Tan, D., Wu, Y., Zhang, Z., Jiao, Y., Zeng, L., & Meng, Y. (2023). Assessing the Life Cycle Sustainability of Solar Energy Production Systems: A Toolkit Review in the Context of Ensuring Environmental Performance Improvements. Sustainability, 15(15), 11724. https://doi.org/10.3390/su151511724
Thies, C., Kieckhäfer, K., Spengler, T. S., & Sodhi, M. S. (2019). Operations research for sustainability assessment of products: A review. European Journal of Operational Research, 274(1), 1-21. https://doi.org/10.1016/j.ejor.2018.04.039
Traverso, M., Asdrubali, F., Francia, A., & Finkbeiner, M. (2012a). Towards life cycle sustainability assessment: An implementation to photovoltaic modules. International Journal of Life Cycle Assessment, 17(8), 1068-1079. https://doi.org/10.1007/s11367-012-0433-8
Traverso, M., Finkbeiner, M., Jørgensen, A., & Schneider, L. (2012b). Life Cycle Sustainability Dashboard. Journal of Industrial Ecology, 16(5), 680-688. https://doi.org/10.1111/j.1530-9290.2012.00497.x
United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda
Valdivia, S., Backes, J. G., Traverso, M., Sonnemann, G., Cucurachi, S., Guinée, J. B., Schaubroeck, T., Finkbeiner, M., Leroy-Parmentier, N., Ugaya, C., Peña, C., Zamagni, A., Inaba, A., Amaral, M., Berger, M., Dvarioniene, J., Vakhitova, T., Benoit-Norris, C., Prox, M., Foolmaun, R., & Goedkoop, M. (2021). Principles for the application of life cycle sustainability assessment. International Journal of Life Cycle Assessment, 26(9), 1900-1905. https://doi.org/10.1007/s11367-021-01958-2
Visentin, C., da Silva Trentin, A. W., Braun, A. B., & Thomé, A. (2020). Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. Journal of Cleaner Production, 270, 122509. https://doi.org/10.1016/j.jclepro.2020.122509
Yuan, X., Chen, L., Sheng, X., Liu, M., Xu, Y., Tang, Y., Wang, Q., Ma, Q., & Zuo, J. (2021). Life cycle cost of electricity production: A comparative study of coal-fired, biomass, and wind power in China. Energies, 14(12), 3463. https://doi.org/10.3390/en14123463

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2024 Economics and Environment