SWOT analysis about the possibilities of using construction waste in Polish road infrastructure
PDF

Keywords

SWOT analysis
construction waste
demolition waste
recycling
roads

How to Cite

Ulewicz, M., & Brycht, N. (2025). SWOT analysis about the possibilities of using construction waste in Polish road infrastructure. Economics and Environment, 92(1), 796. https://doi.org/10.34659/eis.2025.92.1.796

Abstract

In recent years, there has been a significant increase in the level of waste generated from construction and renovation (C&D). In the European Union countries, they constitute approximately 40% of all waste generated annually. C&D waste collected in landfills often has a negative impact on the natural environment. The solution to this problem is their reuse in buildings and road works. Currently, the road industry is one of the best-developing construction sectors, which creates great recycling opportunities. The aim of the article is to identify waste and assess the possibility of its reuse in road construction using SWOT analysis. As much as 80% of identified construction waste can be reused. The most useful waste is basalt grit and stone material (100%), and the least useful is recycled tar (11.1%).

PDF

References

Abdy, C., Zhang, Y., Wang, J., Yang, Y., Artamendi, I., & Allen, B. (2022). Pyrolysis of polyolefin plastic waste and potential applications in asphalt road construction: A technical review. Resources, Conservation & Recycling, 180, 106213. https://doi.org/10.1016/j.resconrec.2022.106213

Act from 3 March 2022. Announcement of the Speaker of the Sejm of the Republic of Poland on the announcement of the uniform text of the Waste Act. Journal of Laws 2022, item 699. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220000699 (in Polish).

Adamczyk, J., & Dylewski, R. (2010). Recycling of Construction Waste in Terms of Sustainable Building. Problems of Sustainable Development, 5(2), 125-131. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPL2-0017-0024?utm_source=chatgpt.com (in Polish).

Ahmad, M. (2011). Utilizing Building Material Waste in Construction as a Factor of Balanced Development. Studies of the national spatial development committee of the Polish Academy of Sciences, 142, 478-490. http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.ojs-issn-0079-3507-year-2011-issue-142-article-bwmeta1_element_oai-journals-pan-pl-96763 (in Polish).

Akbas, M., Ozaslan, B., & Iyisan, R. (2023). Utilization of recycled concrete aggregates for developing high- performance and durable flexible pavements. Construction and Building Materials, 407, 133479. https://doi.org/10.1016/j.conbuildmat.2023.133479

Al-Ali, E. A., & Kuwait, W. K. E. (2023). Effect of using recycled aggregates as road sub-base materials: A case study from Kuwait City. Journal of Science, 50(4), 739-745. https://doi.org/10.1016/j.kjs.2023.02.029

Almokdad, M., & Zentar, R. (2023). Characterization of recycled dredged Sediments: Toward circular economy in road construction. Construction and Building Materials, 402, 132974. https://doi.org/10.1016/j.conbuildmat.2023.132974

Amarilla, R. S. D., Scoczynski Ribeiro, R., de Avelar Gomes, M. H., Pereira Sousa, R., Sant’Ana, L. H., & Catai, R. E. (2021). Acoustic barrier simulation of construction and demolition waste: A sustainable approach to the control of environmental noise. Applied Acoustics, 182, 108201. https://doi.org/10.1016/j.apacoust.2021.108201

Anburuvel, A., Sathiparan, N., Dhananjaya, G. M. A., & Anuruththan, A. (2023). Characteristic evaluation of geopolymer based lateritic soil stabilization enriched with eggshell ash and rice husk ash for road construction: An experimental investigation. Construction and Building Materials, 387, 131659. https://doi.org/10.1016/j.conbuildmat.2023.131659

Ashish, P. K., Sreeram, A., Xu, X., Chandrasekar, P., Jagadeesh, A., Adwani, D., & Padhan, R. K. (2023). Closing the Loop: Harnessing waste plastics for sustainable asphalt mixtures - A comprehensive review. Construction and Building Materials, 400, 132858. https://doi.org/10.1016/j.conbuildmat.2023.132858

Bergonzoni, M., Melloni, R., & Botti, L. (2023). Analysis of sustainable concrete obtained from the by-products of an industrial process and recycled aggregates from construction and demolition waste. Procedia Computer Science, 217, 41-51. https://doi.org/10.1016/j.procs.2022.12.200

Bizon-Górecka, J., & Matuszczak, M. (2017). Manufacturability analysis of steel. Journal of Civil Engineering, Environment and Architecture, 34(64), 225-232. https://doi.org/10.7862/rb.2017.94 (in Polish).

Bocci, E., & Prosperi, E. (2023). Recyclability of reclaimed asphalt rubber pavement. Construction and Building Materials, 403, 133040. https://doi.org/10.1016/j.conbuildmat.2023.133040

Boom, Y. J., Xuan, D. L., Enfrin, M., Swaney, M., Masood, H., Pramanik, B. K., Robert, D., & Giustozz, F. (2023). Engineering properties, microplastics and emissions assessment of recycled plastic modified asphalt mixtures. Science of the Total Environment, 893, 164869. https://doi.org/10.1016/j.scitotenv.2023.164869

Brycht, N. (2020). Construction waste management in rural areas of the Czestochowa district in the aspect of environmental safety. Conference Quality Production Improvement, 2(1), 60-68. https://sciendo.com/pl/article/10.2478/cqpi-2020-0008

Brycht, N. (2021). Assessment of the quality of the repair process of local roads in the rural areas of the Częstochowa and Kłobuck poviats in the context of road safety. Production Engineering Archives, 27(4), 232-241. https://doi.org/10.30657/pea.2021.27.31

Caro, D., Lodato, C., Damgaard, A., Cristobal, J., Foster, G., Flachenecker, F., & Tonini, D. (2023). Environmental and socio-economic effects of construction and demolition waste recycling in the European Union. Science of the Total Environment, 908, 168295. https://doi.org/10.1016/j.scitotenv.2023.168295

Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council, Pub. L. No. 32014D0955, 370 OJ L (2000). https://eur-lex.europa.eu/eli/dec/2014/955/oj/eng

Czajkowska, A., Raczkiewicz, W., & Ingaldi, M. (2023). Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies. Production Engineering Archives, 29(3), 288-297. https://doi.org/10.30657/pea.2023.29.33

Dębska, B., Krasoń, J., & Lichołai, L. (2020). Application of Taguchi method for the design of cement mortars containing waste materials. Construction of Optimized Energy Potential, 9(1), 15-26. https://doi.org/10.17512/bozpe.2020.1.02

Dębska, B., Krasoń, J., & Lichołaj, L. (2021). The evaluation of the possible utilization of waste glass in sustainable mortars. Construction of Optimized Energy Potential, 9(2), 7-15. https://doi.org/10.17512/bozpe.2020.2.01

Devènes, J., Brütting, J., Küpfer, C., Bastien-Masse, M., & Fivet, C. (2022). Re:Crete – Reuse of concrete blocks from cast-in-place building to arch footbridge. Structures, 43, 1854-1867. https://doi.org/10.1016/j.istruc.2022.07.012

Duda, A., Sobala, D., Siwowski, T., & Kaleta, D. (2016). The use of waste tyre rubber in civil engineering. Archives of Institute of Civil Engineering, 21, 97-111. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-fde0d24d-ee76-4781-ac6e-ef1136a5301c (in Polish).

European Asphalt Pavement Association. (2021). Asphalt in figures. https://eapa.org/asphalt-in-figures/

Eurostat. (2023a, September 19). EU key indicators. https://ec.europa.eu/eurostat

Eurostat. (2023b, September 19). Waste statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation

Eurostat. (2024, January 6). Database. https://ec.europa.eu/eurostat/web/main/data/database

Fanijo, E. O., Temitope Kolawole, J., Babafemi, A. J., & Liu, J. (2023). A comprehensive review on the use of recycled concrete aggregate for pavement construction: Properties, performance, and sustainability. Cleaner Materials, 9, 100199. https://doi.org/10.1016/j.clema.2023.100199

Garzón, E., Martínez-Martínez, S., Pérez-Villarrejo, L., & Sánchez-Soto, P. J. (2022). Assessment of construction and demolition wastes (CDWs) as raw materials for the manufacture of low-strength concrete and bases and sub-bases of roads. Materials Letters, 320, 132343. https://doi.org/10.1016/j.matlet.2022.132343

Gholamhosein, T. M., Alireza, A., Amanj, H. A., & Gholamreza, A. (2020). Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23, 100349. https://doi.org/10.1016/j.trgeo.2020.100349

Grygo, R., Bujnarowski, K., & Prusiel, J. A. (2022). Analysis of the possibility of using plastic post-production waste in construction. Economics and Environment, 81(2), 241-256. https://doi.org/10.34659/eis.2022.81.2.467

Guo, Y. C., Li, X. M., Zhang, J., & Lin, J. X. (2023). A review on the influence of recycled plastic aggregate on the engineering properties of concrete. Journal of Building Engineering, 79, 107787. https://doi.org/10.1016/j.jobe.2023.107787

Helbrych, P. (2021). Effect of dosing with propylene fibers on the mechanical properties of concretes. Construction of Optimized Energy Potential, 10(2), 39-44. https://doi.org/10.17512/bozpe.2021.2.05

Helms, M. M., & Nixon, J. (2010). Exploring SWOT analysis – where are we now?: A review of academic research from the last decade. Journal of Strategy and Management, 3(3), 215-251. https://doi.org/10.1108/17554251011064837

Ibrahim, H., Marini, S., Desidery, L., & Lanotte, M. (2023). Recycled plastics and rubber for green roads: The case study of devulcanized tire rubber and waste plastics compounds to enhance bitumen performance. Resources, Conservation & Recycling Advances, 18, 200157. https://doi.org/10.1016/j.rcradv.2023.200157

Iwanski, M., Mazurek, G., Buczynski, P., & Iwanski, M. M. (2022). Effects of hydraulic binder composition on the rheological characteristics of recycled mixtures with foamed bitumen for full depth reclamation. Construction and Building Materials, 330, 127274. https://doi.org/10.1016/j.conbuildmat.2022.127274

Iżykowska-Kujawa, M. (2013). Construction waste management – technologies applied. Ecological Engineering & Environmental Technology, 33, 49-60. https://doi.org/10.12912/23920629/344

Jackiewicz-Rek, W., & Konopska-Piechurska, M. (2013). Zrównoważony rozwój technologii nawierzchni betonowych – aspekty funkcjonalne. Budownictwo, Technologie, Architektura, 1, 36-40. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-147e8af6-63fd-4359-b23f-547c62d2f9c5 (in Polish).

Jackson, S. E., Joshi, A., & Erhardt, N. L. (2003). Recent research on team and organizational diversity: SWOT analysis and implications. Journal of Management, 29(6), 801-830. https://doi.org/10.1016/S0149-2063(03)00080-1

Jura, J., & Ulewicz, M. (2021). Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials, 14(21), 6708. https://doi.org/10.3390/ma14216708

Juveria, F., Rajeev, P., Jegatheesan, P., & Sanjayan, J. (2023). Impact of stabilisation on mechanical properties of recycled concrete aggregate mixed with waste tyre rubber as a pavement material. Case Studies in Construction Materials, 18, e02001. https://doi.org/10.1016/j.cscm.2023.e02001

Kalak, T., Szypura, P., Cierpiszewski, R., & Ulewicz, M. (2023). Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength. Materials, 16(11), 4043. https://doi.org/10.3390/ma16114043

Kalinowska-Wichrowska, K., Pawluczuk, E., Bołtryk, M., Jimenez, J. R., Fernandez-Rodriguez, J. M., & Suescum Morales, D. (2022). The Performance of Concrete Made with Secondary Products—Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix. Materials, 15(4), 1438. https://doi.org/10.3390/ma15041438

Karthikeyan, K., Kothandaraman, S., & Sarang, G. (2023). Perspectives on the utilization of reclaimed asphalt pavement in concrete pavement construction: A critical review. Case Studies in Construction Materials, 19, e02242. https://doi.org/10.1016/j.cscm.2023.e02242

Kox, S., Vanroelen, G., Van Herck, J., de Krem, H., & Vandoren, B. (2019). Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Studies in Construction Materials, 11, e00282. https://doi.org/10.1016/j.cscm.2019.e00282

Król, J. (2021). Nowe rozporządzenie w sprawie utraty statusu odpadów destruktu asfaltowego. Drogownictwo, 11-12, 328-334. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-158f0812-2932-4d8d-9107-277f0a44bd7a/c/nr_11-12_s_328-334_Krol.pdf (in Polish).

Ligabue, M. L., Saburit, A., Lusvardi, G., Malferrari, D., Garcia-Ten, J., & Monfort, E. (2022). Innovative use of thermally treated cement-asbestos in the production of foaming materials: Effect of composition, foaming agent, temperature and reaction time. Construction and Building Materials, 335, 127517. https://doi.org/10.1016/j.conbuildmat.2022.127517

Llopis-Castelló, D., Alonso-Troyano, C., Álvarez-Troncoso, P., Marzá-Beltrán, A., & García, A. (2022). Design of Sustainable Asphalt Mixtures for Bike Lanes Using RAP and Ceramic Waste as Substitutes for Natural Aggregates. Sustainability, 14(23), 15777. https://doi.org/10.3390/su142315777

Maduta, C., Kakoulaki, G., Zangheri, P., & Bavetta, M. (2022). Towards energy efficient and asbestos-free dwellings through deep energy renovation. https://doi.org/10.2760/00828

Malazdrewicz, S., Ostrowski, K. A., & Sadowski, Ł. (2023). Self-compacting concrete with recycled coarse aggregates from concrete construction and demolition waste – Current state-of-the art and perspectives. Construction and Building Materials, 370, 130702. https://doi.org/10.1016/j.conbuildmat.2023.130702

Mantalovas, K., Di Mino, G., Jimenez Del Barco Carrion, A., Keijzer, E., Kalman, B., Parry, T., & Lo Presti, D. (2020). European National Road Authorities and Circular Economy: An Insight into Their Approaches. Sustainability, 12(17), 7160. https://doi.org/10.3390/su12177160

Masi, G., Michelacci, A., Manzi, S., & Bignozzi, M. C. (2022). Assessment of reclaimed asphalt pavement (RAP) as recycled aggregate for concrete. Construction and Building Materials, 341, 127745. https://doi.org/10.1016/j.conbuildmat.2022.127745

Matuszko, L., Parzych, J., & Hozer, J. (2018). The low-energy building – new trends of the construction industry. Studies and Works Faculty of Economics Finance and Management University of Szczecin. Quantitative Methods in Economics, 54(1), 21-31. https://doi.org/10.18276/sip.2018.54/1-02 (in Polish).

Matuszny, M. (2020). Building decision trees based on production knowledge as support in decision-making process. Production Engineering Archives, 26(2), 36-40. https://doi.org/10.30657/pea.2020.26.08

Miranda, H. M. B., Domingues, D., & João Rato, M. (2023). The influence of recycled plastics added via the dry process on the properties of bitumen and asphalt mixtures. Transportation Engineering, 13, 100197. https://doi.org/10.1016/j.treng.2023.100197

Moasas, A. M., Amin, M. N., Khan, K., Ahmad, W., Al-Hashem, M. N. A., Deifalla, A. F., & Ahmad, A. (2022). A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review. Case Studies in Construction Materials, 17, e01677. https://doi.org/10.1016/j.cscm.2022.e01677

Nandal, M., Sood, H., & Gupta, P. K. (2023). A review study on sustainable utilisation of waste in bituminous layers of flexible pavement. Case Studies in Construction Materials, 19, e02525. https://doi.org/10.1016/j.cscm.2023.e02525

Ołdakowska, E. (2021). Worn vehicle tyres in Polish road construction – ecology, law, use, and economics. Economics and Environment, 79(4), 87-96. https://doi.org/10.34659/2021/4/29

Ołdakowska, E., & Ołdakowski, J. (2021). Financial aspect of using the asphalt granulate in mixtures designed for road substructures. Economics and Environment, 77(2), 81-94. https://doi.org/10.34659/2021/2/13

Pateriya, A. S., Robert, D. J., Dharavath, K., & Soni, S. K. (2022). Stabilization of marble wastes using cement and nano materials for subgrade applications. Construction and Building Materials, 326, 126865. https://doi.org/10.1016/j.conbuildmat.2022.126865

Pawluk, K. (2010). The new methods of neutralizing the construction wastes containing asbestos. Scientific Review – Engineering and Environmental Sciences, 49(3), 38-47. (in Polish).

Pereira, P. M., & Vieira, C. S. (2022). Literature Review on the Use of Recycled Construction and Demolition Materials in Unbound Pavement Applications. Sustainability, 14(21), 13918. https://doi.org/10.3390/su142113918

Pickton, D. W., & Wright, S. (1998). What's swot in strategic analysis? Strategic Change, 7(2), 101-109. https://doi.org/10.1002/(SICI)1099-1697(199803/04)7:2<101::AID-JSC332>3.0.CO;2-6

Piercy, N., & Giles, W. (1989). Making SWOT analysis work. Marketing Intelligence & Planning, 7(5/6), 5-7. https://doi.org/10.1108/EUM0000000001042

Pietrzak, A. (2022). The use of Polymer Recyclates in the Technology of Concrete Composites Production. In N. Radek (Ed.), Terotechnology XII (pp. 83-89). Millersville: Materials Research Forum. https://doi.org/10.21741/9781644902059-13

Pietrzak, A., & Ulewicz, M. (2023). Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties. Materials, 16(6), 2231. https://doi.org/10.3390/ma16062231

Piñones, P., Derpich, I., & Venegas, R. (2023). Circular Economy 4.0 Evaluation Model for Urban Road Infrastructure Projects, CIROAD. Sustainability, 15(4), 3205. https://doi.org/10.3390/su15043205

Popławski, J., & Lelusz, M. (2023). Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites. Applied Sciences, 13(3), 1659. https://doi.org/10.3390/app13031659

Puyt, R. W., Lie, F. B., De Graaf, F. J., & Wilderom, C. P. M. (2020). Origins of SWOT analysis. Academy of Management Proceedings, 2020(1), 17416. https://doi.org/10.5465/AMBPP.2020.132

Radević, A., Isailović, I., Wistuba, M. P., Zakić, D., Orešković, M., & Mladenović, G. (2020). The Impact of Recycled Concrete Aggregate on the Stiffness, Fatigue, and Low-Temperature Performance of Asphalt Mixtures for Road Construction. Sustainability, 12(10), 3949. https://doi.org/10.3390/su12103949

Regulation of the Minister of Climate and Environment of December 23, 2021 on specifying detailed conditions for losing the waste status for reclaimed asphalt waste. Journal of Laws 2021, item 2468. https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210002468 (in Polish).

Rout, M. K. D., Biswas, S., Shubham, K., & Sinha, A. K. (2023). A systematic review on performance of reclaimed asphalt pavement (RAP) as sustainable material in rigid pavement construction: Current status to future perspective. Journal of Building Engineering, 76, 107253. https://doi.org/10.1016/j.jobe.2023.107253

Saberian, M., Tajaddini, A., Li, J., Zhang, G., Wang, L., Sun, D., Maqsood, T., & Roychand, R. (2023). Mechanical properties of polypropylene fibre reinforced recycled concrete aggregate for sustainable road base and sub-base applications. Construction and Building Materials, 405, 133352. https://doi.org/10.1016/j.conbuildmat.2023.133352

Sagan, J., & Sobotka, A. (2016). Principles and examples of effective waste management on site. Builder, 20(10), 84-86. http://buildercorp.pl/wp-content/uploads/2017/03/JAK_GOSPODAROWAC.pdf (in Polish).

Sapkota, K., Yaghoubi, E., Wasantha, P. L. P., Van Staden, R., & Fragomeni, S. (2023). Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates. Sustainability, 15(6), 5594. https://doi.org/10.3390/su15065594

Sas, W., & Sobańska, K. (2010). Recycling as a method of reuse the material coming from pavement reconstruction works. Scientific Review – Engineering and Environmental Management, 1(47), 53-64.

Scopus Preview. (2023, November 2). https://www.scopus.com/search/form.uri?display=basic#basic

Shamsuyeva, M., & Endres, H. J. (2021). Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Composites Part C: Open Access, 6, 100168. https://doi.org/10.1016/j.jcomc.2021.100168

Silvestre, G. R., Fleury, M. P., Lins da Silva, J., & Santos, E. C. G. (2023). Use of Recycled Construction and Demolition Waste (RCDW) in Geosynthetic-Reinforced Roadways: Influence of Saturation Condition on Geogrid Mechanical Properties. Sustainability, 15(12), 9663. https://doi.org/10.3390/su15129663

Statistics Poland. (2023, September 25). Ochrona środowiska 2022. https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2022,1,23.html (in Polish).

Statistics Poland. (2024, January 6). Dynamika produkcji budowlano-montażowej w czerwcu 2023 roku. https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/dynamika-produkcji-budowlano-montazowej-w-czerwcu-2023-roku,14,55.html (in Polish).

Sybilski, D. (2009). Zastosowanie odpadów gumowych w budownictwie drogowym. Przegląd budowlany, 5, 37-44. https://www.przegladbudowlany.pl/2009/05/2009-05-pb-37-44_sybilski.pdf (in Polish).

Szafranko, E., & Harasymiuk, J. (2022). Modelling of Decision Processes in Construction Activity. Sustainability, 14(7), 4277. https://doi.org/10.3390/su14074277

Szczęsna, M., & Klimecka-Tatar, D. (2017). SWOT analysis in a cement factory. Archives of Engineering Knowledge, 2(2), 17-19. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5cbb93db-b28a-417f-a2bd-75c7e98b4d10 (in Polish).

Ulewicz, M. (2021). Gospodarka odpadami budowlanymi i rozbiórkowymi w europejskiej strategii zrównoważonego rozwoju – stan i perspektywa. Przegląd Budowlany, 10, 49-53. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-bb3e2718-f2e1-48d1-acac-709811a03d57 (in Polish).

Ulewicz, M., & Liszewski, W. (2020). Influence of public financial support on the process of roof covering replacement and safety of civil structures. System Safety: Human - Technical Facility – Environment, 2(1), 259-267. https://doi.org/10.2478/czoto-2020-0032

Ulewicz, M., & Pietrzak, A. (2021). Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats. Materials, 14(4), 872. https://doi.org/10.3390/ma14040872

Ungureanu, D., Ța˘ranu, N., Hoha, D., Zghibarceaz, S., Isopescu, D. N., Boboc, V., Oprișan, G., Scutaru, M. C., Boboc, A., & Hudișteanu, I. (2020). Accelerated testing of a recycled road structure made with reclaimed asphalt pavement material. Construction and Building Materials, 262, 120658. https://doi.org/10.1016/j.conbuildmat.2020.120658

Wagih, A. M., El-Karmoty, H. Z., Ebid, M., & Okba, S. H. (2013). Recycled construction and demolition concrete waste as aggregate for structural concrete. Housing and Building National Research Center, 9(3), 193-200. https://doi.org/10.1016/j.hbrcj.2013.08.007

Wang, D., Lu, C., Zhu, Z., Zhang, Z., Liu, S., Ji, Y., & Xing, Z. (2023). Mechanical performance of recycled aggregate concrete in green civil engineering: Review. Case Studies in Construction Materials, 19, e02384. https://doi.org/10.1016/j.cscm.2023.e02384

Wójcik, M. (2018). Możliwości recyklingu różnych frakcji odpadów w budownictwie drogowym. Autobusy: technika, eksploatacja, systemy transportowe, 219(5), 37-40. http://ojs.inw-spatium.pl/index.php/Autobusy/article/view/92 (in Polish).

Wowkonowicz, P., Bojanowicz-Bablok, A., & Gworek, B. (2018). Wykorzystanie odpadów z przemysłu wydobywczego i hutnictwa w drogownictwie. Annual Set The Environment Protection, 20, 1335-1349. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-1a4eb1d4-7d02-46f6-8cf0-be22634f0f08 (in Polish).

Xiao, F., Xu, L., Zhao, Z., & Hou, X. (2023). Recent applications and developments of reclaimed asphalt pavement in China, 2010–2021. Sustainable Materials and Technologies, 37, e00697. https://doi.org/10.1016/j.susmat.2023.e00697

You, L., Long, Z., You, Z., Ge, D., Yang, X., Xu, F., Hashemi, M., & Diab, A. (2022). Review of recycling waste plastics in asphalt paving materials. Journal of Traffic and Transportation Engineering (English Edition), 9(5), 742-764. https://doi.org/10.1016/j.jtte.2022.07.002

Yuan, S., Li, K., Luo, J., Zhu, Z., Zeng, Y., Dong, J., Liang, W., & Zhang, F. (2023). Effects of brick-concrete aggregates on the mechanical properties of basalt fiber reinforced recycled waste concrete. Journal of Building Engineering, 80, 108023. https://doi.org/10.1016/j.jobe.2023.108023

Zając, B., & Gołębiowska, I. (2014). Zagospodarowanie odpadów budowlanych. Inżynieria i Aparatura Chemiczna, 6, 393-395. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-35678b3c-89d9-40ca-b8c4-9ffa561ed09c (in Polish).

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Economics and Environment

Downloads

Download data is not yet available.