Selection of a reliable energy source suppling domestic hot water (DHW) system in the kindergarten – a case study


heat pump
solar energy
CO2 emissions

How to Cite

Krawczyk, D. A., Sadowska, B., & Kłopotowski, M. (2024). Selection of a reliable energy source suppling domestic hot water (DHW) system in the kindergarten – a case study. Economics and Environment, 87(4), 711, 1–16.


Renewable energy sources (RESs) are used more and more frequently as energy sources for heating and domestic hot water (DHW). However, there are many factors influencing the energy efficiency, thus also ecological benefits. Before making a decision what kind of RES is useful and reliable, a comprehensive analysis should be conducted taking into account technical, financial and ecological factors. This paper discusses different variants of energy sources that could be applied in a kindergarten building for preparing hot water, in place of existing solution (district heating system, DHS). An air heat pump (AHP) with photovoltaic panels (PV) were considered the most reliable energy sources in the analysed building, in terms of economic and environmental considerations. The simple payback time (SPBT) for this investment was estimated as 14.55 years. This solution causes the lowest CO2 emissions. Another system with solar collectors supplying hot water preparation in the heat center can be also recommended. The simple payback time in this case was slightly higher (14.94 years) and what is more, a decrease in CO2 emissions was observed compared to the actual conditions.


Achbab, E., Lambarki, R., Rhinane, H., & Saifaoui, D. (2022). Estimation of photovoltaic potential at the urban level from 3d city model (solar cadaster): Case of Casablanca city, Morocco. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 46(4/W3-2021), 9-16.

Announcement of the Minister of Development and Technology from 15 April 2022 on the announcement of the consolidated text of the regulation of the Minister of Infrastructure on the technical conditions to be met by buildings and their location. Journal of Laws 2022, item 1225. (in Polish).

Enea. (2023). Cennik ciepła w wodzie. (in Polish).

IEA. (2022). Executive summary.

KOBIZE. (2022a). Wartości opałowe (WO) i wskaźniki emisji CO2 (WE) w roku 2020 do raportowania w ramach Systemu Handlu Uprawnieniami do Emisji za rok 2023. (in Polish).

KOBIZE. (2022b). Wskaźniki Emisyjności CO2, SO2, NOx, CO i Pyłu Całkowitego dla Energii Elektrycznej, na Podstawie Informacji Zawartych w Krajowej Bazie o Emisjach Gazów Cieplarnianych i Innych Substancji za rok 2023. Warszawa: Krajowy Ośrodek Bilansowania i Zarządzania Emisjami, Instytut Ochrony Środowiska, Państwowy Instytut Badawczy. (in Polish).

Kolendo, Ł., & Krawczyk, D. A. (2018). Spatial and economic conditions of the solar energy use in single-family houses – a case study. MATEC Web of Conferences, 174(3), 1038.

Krawczyk, D. A., & Kolendo, Ł. (2017). Projektowanie instalacji solarnych z wykorzystaniem GIS - studium przypadku. Ciepłownictwo, Ogrzewnictwo, Wentylacja, 48(1), 20-23. (in Polish).

Krawczyk, D. A., Rodero, A., & Kolendo, Ł. (2019). Analysis of solar collectors' use in a single family house in Poland and Spain – a case study. IOP Conference Series: Earth and Environmental Science, 214(1), 012045.

Liu, J., Wu, Q., Lin, Z., Zhang, J., & Peng, C. (2023a). A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS. Energy, 282, 128920.

Liu, Y., Xue, S., Guo, X., Zhang, B., Sun, X., Zhang, Q., Wang, Y., & Dong, Y. (2023b). Towards the goal of zero-carbon building retrofitting with variant application degrees of low-carbon technologies: Mitigation potential and cost-benefit analysis for a kindergarten in Beijing. Journal of Cleaner Production, 393, 136316.

Miejski System Informacji Przestrzennej. (2023, October). Serwis geodezyjny. (in Polish).

Ministerstwo Inwestycji i Rozwoju. (2008). Dane do obliczeń energetycznych budynków. (in Polish).

National Energy Conservation Agency. (2018). Energy audit of the kindergarten building. Białystok: National Energy Conservation Agency. (in Polish).

Nowakowski, E. (2012). Wskaźniki zużycia wody w budynkach mieszkalnych i użyteczności publicznej.,wskazniki-zuzycia-wody-w-budynkach-mieszkalnych-i-uzytecznosci-publicznej (in Polish).

Optimal Energy. (2023). Taryfa C11 - tańszy prąd dla firm. (in Polish).

Regulation of the Minister of Infrastructure and Development from 18 March 2015 on the methodology for determining the energy performance of a building or part of a building and building performance certificates. Journal of Laws 2015, item 376. (in Polish).

Regulation of the Minister of Infrastructure from 14 January 2002 on determining average water consumption standards. Journal of Laws No. 8, item 70. (in Polish).

Regulation of the Minister of Infrastructure from 17 March 2009 on the Detailed Scope and Forms of the Energy Audit and Part of the Energy Audit, Audit Card Templates, as well as the Algorithm for Assessing the Profitability of a Thermomodernization Project. Journal of Laws No. 43, item 346. (in Polish).

Regulation of the Minister of Infrastructure from 6 November 2008 on the methodology for calculating the energy performance of a building constituting an independent technical and utility unit and the method of preparing energy performance certificates and templates. Journal of Laws No. 201, item 1240. (in Polish).

Sadowska, B., Piotrowska-Woroniak, J., Woroniak, G., & Sarosiek, W. (2022). Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study. Energies, 15(8), 2886.

Shono, K., Yamaguchi, Y., Perwez, U., Dai, Y., & Shimoda, Y. (2023). Large-scale building-integrated photovoltaics installation on building façades: Hourly resolution analysis using commercial building stock in Tokyo, Japan. Solar Energy, 253, 137-153.

Żukowski, M., & Radzajewska, P. (2015). Optymalny kąt nachylenia kolektorów słonecznych na terenie Polski. Ciepłownictwo, Ogrzewnictwo, Wentylacja, 46(4), 138-142. (in Polish).

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Economics and Environment


Download data is not yet available.