The academic interest for bioplastics - a bibliometric analysis
PDF

Keywords

bioplastics
plastics
bioeconomy
bibliometric analysis
circular economy

How to Cite

Sagapova, N., & Cudlinova, E. (2022). The academic interest for bioplastics - a bibliometric analysis. Economics and Environment, 80(1), 65–82. https://doi.org/10.34659/eis.2022.80.1.436

Abstract

 Plastic materials are shaping modern society and making our lives easier. However, due to improper handling of plastic waste, plastics are no longer ubiquitous only in our homes, villages and cities but also in the natural environment. In line with the concept of bioeconomy, bioplastics are presented as a sustainable option that could help the economy overcome its dependence on fossil fuels and contribute to the reduction of overall plastic pollution. The study aims to identify the areas of academic interest in bioplastics. The study's methodological approach is based on a bibliometric (scientometric) analysis. It was found that in academia, biology, chemistry, and biotechnology are the main areas dealing with bioplastics, focusing on the whole process of product development. At the same time, there is a significant lack of research in areas such as social sciences, including economics. These findings should contribute to the global scientific discourse.

https://doi.org/10.34659/eis.2022.80.1.436
PDF

References

Al-Battashi, H., Annamalai, N., Al-Kindi, S., Nair, A. S., Al-Bahry, S., Verma, J. P., & Sivakumar, N. (2019). Bioplastic production (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari, Journal of Cleaner Production, 214, 236-247. https://doi.org/10.1016/j.jclepro.2018.12.239

Arıkan, E. B., & Bilgen, H. D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability, International Advanced Researches and Engineering Journal, 3(2), 93-97. https://doi.org/10.35860/iarej.420633

Ashok, A., Abhijith, R., & Rejeesh, C. R. (2018). Material characterisation of starch derived biodegradable plastics and its mechanical property estimation, Materials Today: Proceedings, 5(1), 2163-2170. https://doi.org/10.1016/j.matpr.2017.09.214

Athey, S. N., Albotra, S. D., Gordon, C. A., Monteleone, B., Seaton, P., Andrady, A. L., Taylor, A. R., & Brander, S. M. (2020). Trophic transfer of microplastics in an estuarine food chain and the effects of a sorbed legacy pollutant, Limnology and Oceanography, 5(1), 154-162. https://doi.org/10.1002/lol2.10130

Avio, C. G., Gorbi, S., & Regoli, F. (2017). Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research, 128, 2-11. https://doi.org/10.1016/j.marenvres.2016.05.012

Biancolillo, I., Paletto, A., Jacques, B., Keller, M., & Romagnoli, M. (2020). A literature review on forest bioeconomy with a bibliometric network analysis, Journal of Forest Science, 66(7), 265-279. https://doi.org/10.17221/75/2020-JFS

Boni, W., Parrish, K., Patil, S., & Fahrenfeld, N. L. (2021). Total coliform and Escherichia coli in microplastic biofilms grown in wastewater and inactivation by peracetic acid, Water Environment Research, 93(3), 334-342. https://doi.org/10.1002/wer.1434

Brooks, A. L., Wang, S., & Jambeck, J. R. (2018). The Chinese import ban and its impact on global plastic waste trade, Science Advances, 4(6), https://doi.org/10.1126/sciadv.aat0131

Carmona-Serrano, N., López-Belmonte, J., Cuesta-Gómez, J.-L., & Moreno-Guerrero, A.-J. (2020). Documentary Analysis of the Scientific Literature on Autism and Technology in Web of Science, Brain Sciences, 10(12), 985. https://doi.org/10.3390/brainsci10120985

Cinar, S. P., Chong, Z. K., Kucuker, M. A., Wieczorek, N., Cengiz, U., & Kuchta, K. (2020).

Bioplastic Production from Microalgae: A Review, International Journal of Environmental Research and Public Health, 17, 3842. https://doi.org/10.3390/ijerph17113842

Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from Renewable Biomass: A Facile Solution for a Greener Environment, Earth Systems and Environment, 5, 231-251. https://doi.org/10.1007/s41748-021-00208-7

Egun, N. K., & Evbayiro, O. J. (2020). Beat the plastic: an approach to polyethylene terephthalate (PET) bottle waste management in Nigeria, Waste Disposal & Sustainable Energy, 2, 313-320. https://doi.org/10.1007/s42768-020-00052-x

Grubert, E., & Zacarias, M. (2022). Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs, Renewable and Sustainable Energy Reviews, 159, 112208. https://doi.org/10.1016/j.rser.2022.112208

Heller, M. C., Mazor, M. H., & Keoleian, G. A. (2020). Plastics in the US: toward a material flow characterization of production, markets and end of life, Environmental Research Letters, 15(9), 094034. https://doi.org/10.1088/1748-9326/ab9e1e

Herberz, T., Barlow, C. Y., & Finkbeiner, M. (2020). Sustainability Assessment of a Single-Use Plastics Ban, Sustainability, 12(9), 3746. https://doi.org/10.3390/su12093746

Hou, P., Xu, Y., Taiebat, M., Lastoskie, C., Miller, S. A., & Xu, M. (2018). Life cycle assessment of end-of-life treatments for plastic film waste, Journal of Cleaner Production, 201, 1052-1060. https://doi.org/10.1016/j.jclepro.2018.07.278

Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends, European Polymer Journal, 49, 1215-1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019

Ivleva, N. P., Wiesheu, A. C., & Niessner, R. (2016). Microplastic in aquatic ecosystems, Angewandte Chemie International Edition, 56(7), 1720-1739. https://doi.org/10.1002/anie.201606957

Jaconis, S. B., Morita, A. T., Coutinho, P. L. A., & Borschiver, S. (2019). Systematically Monitoring, Relational Database and Technology Roadmapping for Trends and Innovation Opportunities in Biopolymers, Journal of Renewable Materials, 7(11), 1221-1230. https://doi.org/10.32604/jrm.2019.00025

Jander, W. (2022). Advancing bioeconomy monitorings: A case for considering bioplastics. Sustainable Productii and Consumption, 30, 255-268. https://doi.org/10.1016/j.spc.2021.11.033

Jeong, D.-H., & Koo, Y. (2016). Analysis of Trend and Convergence for Science and Technology using the VOSviewer, International Journal of Contents, 12(3), 54-58. https://doi.org/10.5392/IJoC.2016.12.3.054

Jiménez-Castro, M. P., Buller, L. S., Sganzerla, W. G. & Forster-Carneiro, T. (2020). Bioenergy production from orange industrial waste: a case study, Biofuels, Bioproducts & Biorefining, 14(6), 1239-1253. https://doi.org/10.1002/bbb.2128

Jiménez-Rosado, M., Bouroudian, E., Perez-Puyana, V., Guerrero, A., & Romero, A. (2020). Evaluation of different strengthening methods in the mechanical and functional properties of soy protein-based bioplastics, Journal of Cleaner Production, 262, 121517. https://doi.org/10.1016/j.jclepro.2020.121517

Jõgi , K., Bhat, R. (2020). Valorization of food processing wastes and by-products for bioplastic production, Sustainable Chemistry and Pharmacy, 18: 100326. https://doi.org/10.1016/j.scp.2020.100326

Klein, F., Emberger-Klein, A., Menrad, K., Möhring, W., & Blesin, J.-M. (2019). Influencing factors for the purchase intention of consumers choosing bioplastic products in Germany, Sustainable Production and Consumption, 19, 33-43. https://doi.org/10.1016/j.spc.2019.01.004

Konstantinis, A., Rozakis, S., Maria, E.-A., & Shu, K. (2018). A Definition of Bioeconomy through the Bibliometric Networks of the Scientific Literature, AgBioForum, 21(2), 64-85.

Krishnamurthy, A., Amritkumar, P. (2019). Synthesis and characterization of ecofriendly bioplastic from low-cost plant resources, SN Applied Sciences, 1, 1432. https://doi.org/10.1007/s42452-019-1460-x

Lahtela, V., Hyvärinen, M., & Kärki, T. (2019). Composition of Plastic Fractions in WasteStreams: Toward More Efficient Recycling and Utilization, Polymers, 11(1), 69. https://doi.org/10.3390/polym11010069

Lebreton, L., Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal, Palgrave Communications, 5, 6. https://doi.org/10.1057/s41599018-0212-7

Liang, Y., Tan, Q., Song, Q., & Li, J. (2021). An analysis of the plastic waste trade and management in Asia, Waste Management, 119, 242-253. https://doi.org/10.1016/j.wasman.2020.09.049

Liu S., Fang, S., Xiang, Z., Chen, X., Song, Y., Chen, C., Ouyang, G. (2021). Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli, Journal of Hazardous Materials, 407, 124849. https://doi.org/10.1016/j.jhazmat.2020.124849

Lots, F. A. E., Behrens, P., Vijver, M. G., Horton, A. A., & Bosker, T. (2017). A large-scale investigation of microplastic contamination: Abundance and characteristics of microplastics in European beach sediment, Marine Pollution Bulletin, 123(1-2), 219-226. https://doi.org/10.1016/j.marpolbul.2017.08.057

López-Belmonte, J., Parra-González, M. E., Segura-Robles, A., & Pozo-Sánchez, S. (2020). Scientific Mapping of Gamification in Web of Science, European Journal of Investigation in Health, Psychology and Education, 10(3), 832-847. https://doi.org/10.3390/ejihpe10030060

Marín-Marín, J.-A., Moreno-Guerrero, A.-J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: a bibliometric analysis of performance and co-words in Web of Science, International Journal of STEM Education, 8, 41. https://doi.org/10.1186/s40594-021-00296-x

Mercogliano R., Avio, C. G., Regoli, F., Anastasio, A., Colavita, G., & Santonicola, S. (2020). Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain. A Review, Journal of Agricultural and Food Chemistry, 68(19), 5296-5301. https://doi.org/10.1021/acs.jafc.0c01209

Moscato, I., Munoz, D. C., & González, S. D. (2020). How to deal with organic municipal solid waste over-sieve fraction, Environmental Engineering and Management Journal, 19(10), 1807-1811.

Muizniece I., Zihare, I., & Blumberga, D. (2019). Obtaining the Factors Affecting Bioeconomy, Environmental and Climate Technologies, 23(1), 277-191. https://doi.org/10.2478/rtuect-2019-0018

Nkwachukwu, O. I., Chima, C. H., Ikenna, A. O., & Albert, L. (2013). Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries, International Journal of Industrial Chemistry, 4, 34. https: //doi.org/10.1186/2228-5547-4-34

Paltaki, A., Michailidis, A., Chatzitheodoridis, F., Zaralis, K., & Loizou, E. (2021). Bioeconomy and Livestock Production Nexus: A Bibliometric Network Analysis, Sustainability, 13(22), 12350. https://doi.org/10.3390/su132212350

Pfau, S. F., Hagens, J. E., Dankbaar, B., & Smits, A. J. M. (2014). Visions of Sustainability in Bioeconomy Research, 6, 1222-1249. https://doi.org/0.3390/su6031222

Prata, J. C., Silva, A. L. P., Walker, T. R., Duarte, A. C., & Rocha-Santos, T. (2020). COVID19 Pandemic Repercussions on the Use and Management of Plastics, Environmental Science & Technology, 54(13), 7760-7765. https://doi.org/10.1021/acs.est.0c02178

Qu, S., Guo, Y., Ma, Z., Chen, W.-Q., Liu, J., Liu, G., Wang, Y., & Xu, M. (2019). Implications of China’s foreign waste ban on the global circular economy, Resources, Conservation and Recycling, 144, 252-255. https://doi.org/10.1016/j.resconrec.2019.01.004

Rahman, M. D., Bhoi, P. R. (2021). An overview of non-biodegradable bioplastics, Journal of Cleaner Production, 294, 126218. https://doi.org/10.1016/j.jclepro.2021.126218

Rhodes, C. J. (2018). Plastic Pollution and Potential Solutions, Science Progress, 101(3), 207-260. https://doi.org/10.3184/003685018X15294876706211

Roman, L., Schuyler, Q., Wilcox, C., & Hardesty, B. D. (2021). Plastic pollution is killing marine megafauna, but how do we prioritize policies to reduce mortality? Conservation Letters, 14(2), e12781. https://doi.org/10.1111/conl.12781

Roosen, M., Mys, N., Kusenberg, M., Billen, P., Dumoulin, A., Dewulf, J., Van Geem, K. M., Ragaert, K., & De Meester, S. (2020). Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling, Environmental Science & Technology, 54(20), 13282-13293. https://doi.org/10.1021/acs.est.0c03371

Rx3, 2011. The Irish Recycled Plastic Waste Arisings Study. Dublin: Rx3.

Saharan, B. S., Ankita, & Sharma, D. (2012). Bioplastics – for sustainable development: a review, International Journal of Microbial Resource Technology, 1(1), 11-23.

Saikawa , E., Wu, Q., Zhong, M., Avramov, A., Ram, K., Stone, E. A., Stockwell, C. E., Jayarathne, T., Panday, A. K., & Yokelson, R. J. (2020). Garbage Burning in South Asia: How Important Is It to Regional Air Quality?, Environmental Science and Technology, 54(16), 9928-9938. https://doi.org/10.1021/acs.est.0c02830

Selvamurugan, M., Sivakumar, P. (2019). Bioplastics – An Eco-Friendly Alternative to Petrochemical Plastics, Current World Environment, 14(1), 49-59. https://doi.org/10.12944/CWE.14.1.07

Serrano-Ruíz, H., Martín-Closas, L., & Pelacho, A. M. (2018). Application of an in vitro plant ecotoxicity test to unused biodegradable mulches, Polymer Degradation and Stability, 158, 102-110. https://doi.org/10.1016/j.polymdegradstab.2018.10.016

Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review, Biotechnology Advances, 26, 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005

Shah, S. H. H., Lei, S. (2020). Prosumption: bibliometric analysis using HistCite and VOSviewer, Kybernetes, 49(3), 1020-1045. https://doi.org/10.1108/K-12-20180696

Shamsuddin, I. M., Jafar, J. A., Shawai, A. S. A., Yusuf, S., Lateefah, M., & Aminu, I. (2017).

Bioplastics as Better Alternative to Petroplastics and Their Role in National Sustainability: A Review. Advances in Bioscience and Bioengineering, 5(4), 63-70. https://doi.org/10.11648/j.abb.20170504.1

Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K. (2017). Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste, Energy Conversion and Management, 148, 925-934. https://doi.org/10.1016/j.enconman.2017.06.046

Shen, M., Song, B., Zeng, G., Zhang, Y., Huang, W., Wen, X., & Tang, W. (2020). Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution, 263, 114469. https://doi.org/10.1016/j.envpol.2020.114469

Shruti, V. C., Kutralam-Muniasamy, G. (2019). Bioplastics: Missing link in the era of Microplastics, Science of The Total Environment, 697, 134139. https://doi.org/10.1016/j.scitotenv.2019.134139

Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics, Philosophical Transactions of the Royal Society B, 364(1526), 2127-2139. https://doi.org/10.1098/rstb.2008.0289

Špajcar, M., Horvat, P., & Kržan, A. (2012). Biopolymers and Bioplastics: Plastics aligned with nature. Ljubljana: National Institute of Chemistry.

Thiel, M., Luna-Jorquera, G., Álvarez-Varas, R., Gallardo, C., Hinojosa, I. A., Luna, N., Miranda-Urbina, D., Morales, N., Ory, N., Pacheco, A. S., Porflitt-Toro, M., & Zavalaga, C. (2018). Impacts of Marine Plastic Pollution From Continental Coasts to Subtropical Gyres – Fish, Seabirds, and Other Vertebrates in the SE Pacific, Frontiers in Marine Science, 5, 238. https://doi.org/10.3389/fmars.2018.00238

Turpie , J., Letley, G., Ng’oma, Y., & Moore, K. (2019). The case for banning single-use plastics in Malawi: Report prepared for UNDP on behalf of the Government of Malawi by Anchor Environmental Consultants in collaboration with Lilongwe Wildlife Trust. Report No. AEC/1836/1. Anchor Environmental Consultants.

Ubando, A. T., Felix, Ch., B., Chen, & W.-H. (2020). Biorefineries in circular bioeconomy: A comprehensive review, Bioresource Technology, 299, 122585. https://doi.org/10.1016/j.biortech.2019.122585

Usmani, Z., Sharma, M., Awasthi, A. K., Sivaumar, N., Lukk, T., Pecoraro, L., Thakur, V. K., Roberts, D., Newbold, J., & Gupta, V. K. (2021). Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact, Bioresource Technology, 322, 124548. https://doi.org/10.1016/j.biortech.2020.124548

Valderrama, M. A. M., Van Putten, R.-J., & Gruter, G.-J. M. (2019). The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU), European Polymer Journal, 119, 445-468. https://doi.org/10.1016/j.eurpolymj.2019.07.036

Van Eck, N. J., Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping, Scientometrics, 84, 523-538. https://doi.org/10.1007/s11192-009-0146-3

Van Eck, N. J., Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer, Scientometrics, 111, 1053-1070. https://doi.org/10.1007/s11192-017-2300-7

Vanapalli, K. R., Sharma, H. B., Ranjan, V. P., Samal, B., Bhattacharya, J., Dubey, B. K., & Goel. S. (2021). Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic, Science of The Total Environment, 750, 141514. https://doi.org/10.1016/j.scitotenv.2020.141514

Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016). Toxic Pollutants from Plastic Waste – A Review, Procedia Environmental Science, 35, 701-708. https://doi.org/10.1016/j.proenv.2016.07.069

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Ekonomia i Środowisko - Economics and Environment

Downloads

Download data is not yet available.