Forecasting the development of electricity from renewable energy sources in Poland against the background of the European Union countries
PDF

Keywords

forecasting
RES in the European Union
Holt-Winters model
autoregressive model
electricity

How to Cite

Stanuch, M., & Firlej, K. A. (2023). Forecasting the development of electricity from renewable energy sources in Poland against the background of the European Union countries. Economics and Environment, 84(1), 30–50. https://doi.org/10.34659/eis.2023.84.1.536

Abstract

One of the key elements in the development of countries is energy stability particularly related to ensuring, among other things, continuity of power supply. The European Commission is trying to protect the security of energy supply by introducing internal conditions regarding the share of RES in everyday life. The aim of this article is to forecast the share of RES in electricity production for all the EU member states. The study covers the years 1985-2021, the research is based on two models: the autoregressive (AR) model and the Holt-Winters model, whereas the prediction values were determined for the period 2022-2030. The prediction values showed that Denmark, as the only one of the community countries, may turn out to be self-sufficient in terms of electricity production from RES already at the turn of 2026-2027. In the case of Poland, there is a high probability that the projected RES share for 2030 will not be met. Potentially, for most EU countries, the energy produced from RES will satisfy at least 50% of electricity demand by 2030. A projection of the chances of meeting the commitments presented in the National Energy and Climate Plans regarding the share of renewable energy sources in electricity production in the EU member states in 2030 indicates that they will not be met in most EU economies.

https://doi.org/10.34659/eis.2023.84.1.536
PDF

References

gospodarka. (2022, August 16). Rumunia z pierwszą farmą fotowoltaiczną. Budowa właśnie się rozpoczęła (Romania with its first photovoltaic farm. Construction has just begun). https://300gospodarka.pl/300klimat/rumunia-pierwsza-farma-fotowoltaiczna-photon-energy

Autoregressive models. (2022, August 01). https://otexts.com/fpp2/AR.html

Blum, H., & Legey, L. F. L. (2012). The challenging economics of energy security: Ensuring energy benefits in support to sustainable development. Energy Economics, 34(6), 1982-1989. https://doi.org/10.1016/j.eneco.2012.08.013

Buriak, J. (2014). Ocena warunków nasłonecznienia i projektowanie elektrowni słonecznych z wykorzystaniem dedykowanego oprogramowania oraz baz danych (Assessment of insolation conditions and design of solar power plants with the use of dedicated software and databases). Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, 40, 1-4.

Chai, T., & Draxler, R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model Development, 7, 1247-1250.

CIRE.PL. (2022, December 21). Prognozy udziału OZE w produkcji energii na koniec 2022 roku. (Projections of RES share in energy production at the end of 2022). https://zielona-energia.cire.pl/artykuly/serwis-informacyjny-cire-24/prognozy-udzialu-oze-w-produkcji-energii-na-koniec-2022-roku

Danish Ministry of Climate, Energy and Utilities. (2022, August 15). Denmark decides to construct the world’s first windenergy hub as an artificial island in the North Sea. https://en.kefm.dk/news/news-archive/2021/feb/denmark-decides-to-construct-the-world%e2%80%99s-first-windenergy-hub-as-an-artificial-island-in-the-north-sea

Dawid, L. (2017). Chosen Problems of Wind Farms Localization in Light of New Law on Investments Concerning Wind Power Stations. Infrastruktura i Ekologia Terenów Wiejskich, 4(1), 1445-1455.

De Jonghe, C., Delarue, E., Belmans, R., & D’haeseleer, W. (2009). Interactions between measures for the support of electricity from renewable energy sources and CO2 mitigation. Energy Policy, 37(11), 4743-4752. https://doi.org/10.1016/j.enpol.2009.06.033

European Commission. (2019). Clean energy for all Europeans. https://doi.org/10.2833/9937

European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the european economic and social committee and the committee of the regions. An eu strategy to harness the potential of offshore renewable energy for a climate neutral future. Com(2020) 741 final. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0741&from=PL

European Commission. (2022). Communication from the Commission to the European Parliament, the European Council, the Council, the european economic and social committee and the committee of the regions. Repowereu plan. Com(2022) 230 final. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022SC0230&from=EN

European Parliament. (2018). Proposal for a directive of the European Parliament and of the council amending Directive (eu) 2018/2001 of the European Parliament and of the Council, Regulation (eu) 2018/1999 of the European Parliament and of the Council and Directive 98/70/ec of the European Parliament and of the Council as regards the promotion of energy from renewable sources, and repealing Council Directive (eu) 2015/652 com/2021/557 final. https://eur-lex.europa.eu/resource.html?uri=cellar:dbb7eb9c-e575-11eb-a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF

Firlej, K., A., & Stanuch, M., (2022). Forecasting the development of renewable energy sources in the Visegrad Group countries against the background of the European Union. International Entrepreneurship Review, 8(3), 37-52. https://doi.org/10.15678/ IER.2022.0803.03

Fundacja Instytut na rzecz Ekorozwoju. (2020). Krajowe Plany Energii i Klimatu dalekie od celu (National Energy and Climate Plans far from target). https://www.pine.org.pl/wp-content/uploads/2020/09/broszura_3.pdf

IRENA. (2015, August 16). International Renewable Energy Agency. Remap 2030. Renewable energy prospects for Poland. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_REmap_Poland_paper_2015_EN.pdf

IRENA. (2018). International Renewable Energy Agency. Renewable energy prospects for the European Union. https://www.irena.org/-/media/Files/IRENA/Agency/Publication /2018/Feb/IRENA_REmap_EU_2018.pdf

IRENA. (2022). International Renewable Energy Agency. Renewable energy targets in 2022. A guide to design. https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2022/Nov/IRENA_ RE_targets_2022.pdf?rev=f39ae339801e4853a2a0ebdb4d167f83

Kurzak, L. (2010). Energia odnawialna w zrównoważonej polityce UE (Renewable energy in a sustainable EU policy). Zeszyty Naukowe Politechniki Częstochowskiej, 1(16), 47-55.

Mac Domhnaill, C., & Ryan, L. (2020a). Towards renewable electricity in Europe: Revisiting the determinants of renewable electricity in the European Union. Renewable Energy, 154, 955-965. https://doi.org/10.1016/j.renene.2020.03.084

Mac Domhnaill, C., & Ryan, L. (2020b). Towards renewable electricity in Europe: Revisiting the determinants of renewable electricity in the European Union. Renewable Energy, 154, 955-965. https://doi.org/10.1016/j.renene.2020.03.084

Matuszewska-Janica, A., Żebrowska-Suchodolska, D., Ala-Karvia, U., & Hozer-Koćmiel, M. (2021). Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019. Energies, 14(19), 6276. https://doi.org/10.3390/en14196276

Manowska, A. (2021). Forecasting of the Share of Renewable Sources in the Total Final Energy Consumption for Selected European Union Countries. Proceedings of the IOP Conference Series: Earth and Environmental Science. 7th World Multidisciplinary Earth Sciences Symposium (WMESS 2021), Prague, Czech, 6-10 September 2021, 906, 012134. https://doi.org/10.1088/1755-1315/906/1/012134

Mehedintu, A., Soava, G., Sterpu, M., & Grecu, E. (2021). Evolution and Forecasting of the Renewable Energy Consumption in the Frame of Sustainable Development: EU vs. Romania. Sustainability, 13(18), 10327. https://doi.org/10.3390/su131810327

Miciuła I. (2015). Polityka energetyczna Unii Europejskiej do 2030 roku w ramach zrównoważonego rozwoju (The European Union's energy policy until 2030 within a sustainable development framework). Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania, 42, 57-67. https://doi.org/10.18276/sip.2015.42/2-05

Ministerstwo Aktywów Państwowych. (2019, August 18). Krajowy plan na rzecz energii i klimatu na lata 2021-2030, Założenia i cele oraz polityki i działania (National Energy and Climate Plan 2021-2030, Assumptions and objectives and policies and actions). https://www.gov.pl/web/klimat/krajowy-plan-na-rzecz-energii-i-klimatu

Ministerstwo Energii. (2019, August 15). National Energy and Climate Plan for the years 2021-2030 Objectives and targets, and policies and measures. https://ec.europa.eu/energy/sites/ener/files/documents/poland_draftnecp_en.pdf

Trade. Netherlands – Country Commercial Guide. (2021, August 18). Energy. https://www.trade.gov/country-commercial-guides/netherlands-energy

Our World in Data. (2022a, August 20). Energy Mix. https://ourworldindata.org/energy-mix

Our World in Data. (2022b, August 01). Electricity Mix. https://ourworldindata.org/electricity-mix#explore-more-of-our-work-on-energy

Pająk, K. & Mazurkiewicz, J. (2014). Mechanizmy wspierania rozwoju energetyki odnawialnej (Mechanisms for supporting the development of renewable energy). Polityka gospodarcza w okresie transformacji i kryzysu, 166, 249-260.

Paska, J., & Surma, T. (2014). Electricity generation from renewable energy sources in Poland. Renewable Energy, 71, 286-294. https://doi.org/10.1016/j.renene.2014.05.011

Pleśniarska, A. (2019). Monitoring progress in “quality education” in the European Union – strategic framework and goals. International Journal of Sustainability in Higher Education, 20(7), 1125-1142. https://doi.org/10.1108/ijshe-10-2018-0171

PSE. (2022). Polskie Sieci Elektroenergetyczne. Plan rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na energię elektryczną na lata 2023-2032 (Development plan for meeting current and future electricity demand for 2023-2032). p. 26.

Raugei, M., Peluso, A., Leccisi, E., & Fthenakis, V. (2020). Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.). Energies, 13(15), 3934. https://doi.org/10.3390/en13153934

Romania-Insider. (2018, August 16). Romania estimates moderate target for 2030 renewable energy share. https://www.romania-insider.com/romania-target-2030-renewable-energy-share

Ruszel, M. (2016). The political importance of energy cooperation between Germany and Denmark on the European Union energy market. E3S Web of Conferences 10. https://doi.org/10.1051/e3sconf/20161000135

Şahin, U., Ballı, S., & Chen, Y. (2021). Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods. Applied Energy, 302, 117540. https://doi.org/10.1016/j.apenergy.2021.117540

Sokulski, C. C., Barros, M. V., Salvador, R., Broday, E. E., & de Francisco, A. C. (2022a). Trends in Renewable Electricity Generation in the G20 Countries: An Analysis of the 1990-2020 Period. Sustainability, 14(4), 2084. https://doi.org/10.3390/su14042084

Stanek, W., Czarnowska, L., Gazda, W., & Simla, T. (2018). Thermo-ecological cost of electricity from renewable energy sources. Renewable Energy, 115, 87-96. https://doi.org/10.1016/j.renene.2017.07.074

Szumksta-Zawadzka, M., & Zawadzki, J. (2014). Modele wyrównywania wykładniczego w prognozowaniu zmiennych ekonomicznych ze złożoną sezonowością (Exponential smoothings models in forecasting of economic variables with complex seasonality). Folia Pomer. Univ. Technol. Stetin., Oeconomica, 76. 137-146.

Talarek, K., Knitter-Piątkowska, A., & Garbowski, T. (2022). Wind Parks in Poland – New Challenges and Perspectives. Energies, 15(19), 7004. https://doi.org/10.3390/en15197004

The Guardian. (2022, August 15). Wind power generates 140% of Denmark’s electricity demand. https://www.theguardian.com/environment/2015/jul/10/denmark-wind-windfarm-power-exceed-electricity-demand

Tomala, J., Mierzejewski, M., Urbaniec, M., & Martinez, S. (2021). Towards Sustainable Energy Development in Sub-Saharan Africa: Challenges and Opportunities. Energies, 14(19), 6037. https://doi.org/10.3390/en14196037

Utkucan, Ş. (2021). Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by 2030 using optimized fractional nonlinear grey Bernoulli model. Sustainable Production and Consumption, 25, 1-14, https://doi.org/10.1016/j.spc.2020.07.009

Windeurope. (2022, August 19). National Energy & Climate Plans. https://windeurope.org/2030plans/

Yang, M., & Kim, J. (2020). Revisiting the Relation between Renewable Electricity and Economic Growth: A Renewable–Growth Hypothesis. Sustainability, 12(8), 3121. https://doi.org/10.3390/su12083121

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Economics and Environment

Downloads

Download data is not yet available.