
ECONOMICS AND ENVIRONMENT 13(94) • 2025 eISSN  2957-0395

SPATIO-TEMPORAL DYNAMICS OF LAND USE 
AND LAND COVER IN SELANGOR (2005–2020): 
INSIGHTS FROM MODIS AND GOOGLE EARTH 
ENGINE FOR SUSTAINABLE URBAN PLANNING

Luqman Al-Hakim SHAMSUDIN (ORCID: 0009-0002-2012-0547) – Department of Geography,  
Faculty of Arts and Social Sciences, University of Malaya, Kuala Lumpur, Malaysia

Ang Kean HUA (ORCID: 0000-0002-2479-4111) – Department of Geography, Faculty of Arts and Social Sciences, 
University of Malaya, Kuala Lumpur, Malaysia

Correspondence address: 
University of Malaya, 50603 Kuala Lumpur, Malaysia
e-mail: angkeanhua888@um.edu.my

Luqman Al-Hakim SHAMSUDIN • Ang Kean HUA

Economics and Environment   •   No. 3(94) 2025   •   pages: 1-16 DOI: 10.34659/eis.2025.94.3.1203

ABSTRACT: This study investigates the spatio-temporal changes in land use and land cover (LULC) in Selangor, Malaysia, from 
2005 to 2020 using Moderate Resolution Imaging Spectroradiometer (MODIS) data processed via the Google Earth Engine 
(GEE). As the most urbanised state in Malaysia, Selangor has undergone rapid transformation, with significant shifts from veg-
etation and agricultural land to built-up areas due to urbanisation, industrial growth, and infrastructure development. Employing 
MODIS land cover datasets for four reference years (2005, 2010, 2015, and 2020) and validated classification techniques, five 
primary land cover classes, built-up areas, vegetation, agricultural land, open spaces, and water bodies, were analysed. Results 
show that built-up areas increased consistently, rising from 18.9% in 2005 to 20.67% in 2020, while vegetative cover declined 
from 68.91% to 65.06% over the same period. Agricultural areas exhibited fluctuating trends, reflecting shifts in land-use policy 
and food production strategies. Open areas, defined as non-urban and non-agricultural cleared or vacant land (including con-
struction sites, parks, and recreation grounds), expanded until 2015 but contracted by 2020, reflecting their transitional nature 
as lands earmarked for future development. Water bodies remained relatively unchanged. Accuracy assessments yielded over 
80% overall classification accuracy, confirming the reliability of the analysis. This study highlights the effectiveness of cloud-
based remote sensing for monitoring urban expansion and environmental change. The findings serve as vital geospatial evi-
dence for policymakers and urban planners to devise data-driven, sustainable land management strategies. By integrating 
spatial analysis with high-resolution temporal monitoring, this research contributes to informed decision-making aligned with 
environmental preservation and urban resilience goals. 
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Introduction

Selangor has emerged as Malaysia’s most economically vibrant and rapidly urbanising state, 
positioning itself as a pivotal nucleus for industrial development, commercial enterprise, and regional 
trade. In recent decades, the state has witnessed an unprecedented surge in urban growth, driven by 
expanding residential zones, infrastructural upgrades, and commercial proliferation. This swift 
urbanisation has catalysed significant land use transitions, evidenced by the steady conversion of 
agricultural land and natural green cover into built-up environments. The spatial reconfiguration of 
Selangor’s landscape underscores a critical tension between economic advancement and ecological 
integrity. While urbanisation fuels economic productivity, it simultaneously accelerates landscape 
fragmentation, depletes ecological buffers, and compromises ecosystem services. Consequences 
include elevated surface runoff, habitat destruction, the intensification of urban heat islands, and the 
deterioration of air and water quality (Seto et al., 2012; United Nations, 2018).

In response to these multifaceted challenges, there is a growing imperative for informed and 
sustainable land management strategies. Monitoring and analysing LULC changes has become indis-
pensable for urban planners, environmental managers, and policymakers seeking to anticipate devel-
opmental pressures and mitigate environmental degradation. Accurate and timely assessment of 
land cover dynamics enables evidence-based interventions that balance urban growth with environ-
mental preservation (Lambin & Geist, 2006; Herold et al., 2005). Technological advancements in 
earth observation have significantly enhanced the capacity to monitor these transformations. The 
Moderate Resolution Imaging Spectroradiometer (MODIS), for instance, provides annual land cover 
datasets with moderate spatial detail, offering a powerful resource for tracking regional land changes 
(Belward & Skøien, 2015). Furthermore, the advent of cloud-computing platforms such as Google 
Earth Engine (GEE) has revolutionised remote sensing analysis. By facilitating access to global satel-
lite archives and offering computational scalability, GEE enables high-resolution, large-scale, and 
cost-effective spatiotemporal analyses (Gorelick et al., 2017).

Against this backdrop, the present study was conducted to: (1) classify major land cover types in 
Selangor; (2) assess the classification accuracy of MODIS satellite data for regional LULC mapping; 
and (3) investigate temporal changes in land use patterns between 2005-to-2020. By unveiling the 
trajectories and intensities of land cover transitions, this research aims to provide crucial spatial 
intelligence for sustainable development planning and environmental stewardship. The integration 
of satellite-based data with rigorous quantitative methods strengthens the foundation for adaptive 
land governance, enabling decision-makers to craft resilient and ecologically responsible urban 
development strategies that align with long-term sustainability goals.

Literature Review

Land Use and Land Cover Change (LULC) and the Satellite data

The study of Land Use and Land Cover (LULC) transformations is crucial for comprehending the 
multifaceted relationships between anthropogenic interventions and ecological transitions. LULC 
analysis enables researchers to dissect how human-induced and natural factors, such as demographic 
shifts, economic growth, institutional frameworks, and environmental policies, shape terrestrial 
landscapes over time (Verburg et al., 2006). Understanding these dynamics is pivotal not only for 
retrospective assessment but also for forecasting future land system trajectories. Land-use models, 
therefore, serve dual purposes: they offer diagnostic clarity and function as robust predictive tools, 
guiding the formulation of sustainable development policies (Verburg et al., 2006). In this context, 
advancements in remote sensing technology have revolutionised our ability to monitor and quantify 
LULC changes at regional, national, and global scales. Among the most widely utilised tools is the 
Moderate Resolution Imaging Spectroradiometer (MODIS), particularly the MCD12Q1 product, which 
delivers annually updated land cover classifications suitable for temporal change analysis (Liang et 
al., 2015). Although MODIS operates at a moderate spatial resolution of approximately 500 meters, 
its high temporal frequency and global coverage make it invaluable for detecting macro-level land 
change patterns (Giri et al., 2005). Moreover, the integration of MODIS data with high-resolution plat-
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forms such as Sentinel-1 and Sentinel-2 enhances spatial specificity, allowing researchers to conduct 
more refined and localised LULC assessments (Grieco et al., 2025).

LULC of Selangor and the accuracy assessment

Ensuring the reliability and precision of LULC classifications is fundamental to producing valid 
spatial analyses. To this end, various accuracy assessment methodologies are employed to evaluate 
classification robustness. These include confusion matrices and metrics such as users’ accuracy, pro-
ducers’ accuracy, and the kappa coefficient (Chaaban et al., 2022; Foody, 2020). While the kappa sta-
tistic remains a popular metric, it has been criticised for its sensitivity to class imbalances, potentially 
skewing interpretation when land categories are unevenly distributed (Foody, 2020). Therefore, 
complementary measures are encouraged to provide a more holistic view of classification perfor-
mance. Cross-comparisons between different satellite products, such as MODIS and GlobeLand30, 
also require harmonisation of classification schemes to ensure consistency and comparability across 
datasets (Liang et al., 2015). Additionally, the accuracy of LULC outputs is influenced by factors 
including the heterogeneity of the landscape, the complexity of land cover types, and the spatial scale 
of the study area.

Selangor, as Malaysia’s most rapidly urbanising state, exemplifies the profound implications of 
unregulated land transformation. As observed by Abdullah and Nakagoshi (2006), rapid urban 
expansion in Selangor has led to fragmented landscapes and complex spatial configurations. More 
recent studies further underscore this trend. Azari et al. (2022) utilised a Decision Forest-Markov 
Chain model to project future land use trajectories in Selangor, forecasting further encroachment of 
built-up and agricultural areas into natural ecosystems. Complementarily, Baig et al. (2022) adopted 
a hybrid Cellular Automata–Artificial Neural Network (CA-ANN) approach to model land dynamics, 
illustrating substantial urban sprawl and the concurrent contraction of forested and agricultural 
zones. These findings highlight the urgency of developing comprehensive, sustainability-oriented 
land-use policies in the face of continuous urban pressure. Predictive modelling tools such as Cellular 
Automata (CA), Markov Chains, and CA-ANN hybrids have proven increasingly essential for simulat-
ing spatial patterns and supporting long-term land use planning (Baig et al., 2022; Azari et al., 2022).

In parallel, the evolution of cloud-based platforms like Google Earth Engine (GEE) has trans-
formed how large-scale geospatial data are accessed and processed. GEE offers unparalleled compu-
tational power, enabling scalable and efficient analysis of massive remote sensing datasets such as 
MODIS and Sentinel (Zhao et al., 2021). Its intuitive interface and integration capabilities have made 
it a cornerstone for contemporary LULC monitoring. Nevertheless, technical challenges remain. Lim-
itations related to spatial resolution, disparities in classification standards, and the availability of 
accurate reference data can hinder the precision of land cover classification (Giri et al., 2005; Liang et 
al., 2015). Furthermore, spatial heterogeneity often introduces classification errors in complex ter-
rains. Grieco et al. (2025) argue that selecting data products aligned with the intended research 
application, particularly in context-sensitive areas such as agriculture, is critical to ensuring deci-
sion-relevant outputs. Meanwhile, Chaaban et al. (2022) emphasise the necessity of implementing 
comprehensive accuracy validation procedures, even when using widely accepted global datasets, to 
reinforce the reliability of spatial conclusions. While previous studies (Azari et al., 2022; Baig et al., 
2022) focused on predictive modelling of Selangor’s future land use, few have employed long-term 
MODIS datasets within GEE to produce reproducible, validated, and policy-relevant LULC change 
maps. This study addresses that gap by providing empirical evidence across 15 years with explicit 
accuracy validation.

Materials and Methodology

Study area

This research focuses on Selangor, a strategically significant and socioeconomically dynamic 
state located on the western corridor of Peninsular Malaysia, geographically positioned at approxi-
mately 3.5092° N latitude and 101.5248° E longitude. As the most developed and urbanised state in 
Malaysia, Selangor functions as a vital epicentre for the nation’s economic activities, encompassing 
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key sectors such as manufacturing, services, logistics, and trade. Its proximity to the capital city of 
Kuala Lumpur, coupled with well-established infrastructure and industrial networks, has attracted 
continuous population inflows and investments, contributing to the state’s rapid urban transforma-
tion. Spanning a diverse and heterogeneous landscape, Selangor comprises a wide spectrum of land 
use categories. These include densely populated residential areas, expansive industrial zones, com-
mercial precincts, agricultural lands, forest reserves, inland water bodies, and open recreational 
spaces. This multifaceted land use matrix makes Selangor an ideal case study for assessing spa-
tio-temporal patterns of land use and land cover (LULC) change. Over the past two decades, Selangor 
has experienced substantial shifts in its physical landscape, primarily driven by accelerating urbani-
sation, infrastructure development, and the expansion of transportation networks. These changes 
are further compounded by the pressures of population growth and economic liberalisation, leading 
to the encroachment of built-up areas into previously green and agricultural zones. Given this con-
text, Selangor offers a unique opportunity to analyse LULC dynamics in a rapidly evolving metropoli-
tan setting. The 15-year study period from 2005 to 2020 captures crucial phases of transformation, 
allowing for a comprehensive evaluation of urban expansion trends, deforestation rates, and agricul-
tural displacement. The insights derived from this analysis are essential not only for understanding 
the localised impacts of land use change but also for informing broader policy dialogues on sustaina-
ble urban development in Southeast Asia.

Figure 1. The study area of Selangor using sentinel satellite imagery

Data Sources

This study leverages two primary satellite-based datasets, each sourced from publicly accessible 
and scientifically validated repositories. The core dataset utilised is the MODIS Land Cover Type 
product MCD12Q1 Version 6.1 (IGBP classification, 500 m resolution), which provides annually 
updated land cover maps for the years 2005, 2010, 2015, and 2020. The specific reclassification rules 
applied in this study are summarised in Table 1, and the full Google Earth Engine (GEE) script was 
used for data processing to ensure reproducibility. With a spatial resolution of approximately 500 
meters, MODIS is widely recognised for its utility in macro-scale land use and land cover (LULC) 
analysis. Its high temporal resolution and broad spatial coverage make it an optimal choice for mon-
itoring regional-scale landscape dynamics across extended timeframes. The MODIS data products 
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have been instrumental in numerous LULC studies due to their reliability, temporal continuity, and 
integration capabilities with other geospatial datasets.

Data Collection and Processing techniques

The downloaded MODIS datasets were processed using Google Earth Engine (GEE), a cloud-
based geospatial analysis platform known for its capacity to handle extensive Earth observation data-
sets with efficiency and scalability. GEE offers access to an expansive archive of satellite imagery, 
including MODIS, and equips researchers with a comprehensive suite of tools for data manipulation, 
such as clipping, masking, filtering, and classification, without the need for high-end local computing 
infrastructure. This significantly reduces analytical overhead and enables a focus on analytical rigour 
and interpretation. The first step in the processing workflow involved importing the MODIS land 
cover data for each target year into the GEE environment. The spatial scope of analysis was then 
refined by clipping the satellite data using a shapefile of Selangor’s administrative boundary, uploaded 
into GEE as a vector layer. This ensured that the subsequent analyses were confined to the geographic 
extent of interest, eliminating extraneous data and enhancing computational efficiency. The clipped 
data were then exported for further refinement and spatial classification in ArcGIS Pro, a desk-
top-based geographic information system software suite. In ArcGIS Pro, reclassification procedures 
mapped the 17 IGBP classes of MCD12Q1 into five categories: built-up, vegetation, agriculture, open 
areas, and water (see Table 1 for full mapping). For example, IGBP ‘Urban’ was reclassified as built-up, 
‘Cropland’ as agriculture, and ‘Forest/Shrubland/Grassland’ as vegetation. This reclassification pro-
cess entailed assigning each MODIS pixel a new thematic category aligned with the study’s concep-
tual framework, thereby enabling cross-year comparisons and thematic harmonisation. The final 
output included yearly land use maps, which were instrumental for visualising LULC transformations 
over the 15-year analysis window. These maps not only serve as spatial documentation of change but 
also form the foundation for subsequent statistical and pattern-based analyses. Change detection was 
conducted via pixel-by-pixel post-classification comparison (map overlay) between time periods. 
No-data pixels were excluded from analysis.

Table 1. 	 Reclassification of MODIS MCD12Q1 (IGBP scheme) into study land-use/land-cover (LULC) categories for 
Selangor (2005–2020)

IGBP Code IGBP Class Name Reclassified Study Category Notes / Justification

0 / 17 Unclassified / Water Water bodies Directly assigned as water; represents permanent rivers, lakes, 
and reservoirs.

1 Evergreen Needleleaf Forest Vegetation Grouped as natural vegetation.

2 Evergreen Broadleaf Forest Vegetation Dominant in tropical forest zones.

3 Deciduous Needleleaf Forest Vegetation Sparse in Selangor but included in vegetation.

4 Deciduous Broadleaf Forest Vegetation Included under vegetation.

5 Mixed Forest Vegetation Represents forest mosaics.

6 Closed Shrublands Vegetation Grouped with vegetation cover.

7 Open Shrublands Vegetation Grouped with vegetation cover.

8 Woody Savannas Vegetation Grouped as vegetation.

9 Savannas Vegetation Grouped as vegetation.

10 Grasslands Vegetation Represents natural grassland cover.

12 Woody Wetlands Vegetation Includes mangrove/peat swamp forests; grouped as vegetation.

11 Permanent Wetlands (Non-
woody)

Vegetation Classified as vegetation since wetlands in Selangor (e.g., peat 
swamp, mangroves) are vegetated rather than open aquatic.

13 Croplands Agriculture Assigned as agricultural land.
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IGBP Code IGBP Class Name Reclassified Study Category Notes / Justification

16 Cropland/Natural Vegetation 
Mosaic

Agriculture Represents mixed-use agriculture.

14 Urban and Built-up Built-up Assigned as urban land (residential, industrial, infrastructure).

15 Permanent Snow and Ice Not applicable Absent in Selangor.

254 / 255 Fill value / Missing data Not applicable Masked from analysis.

Note: Classes not present in Selangor (e.g., Permanent Snow/Ice) were excluded. Permanent wetlands (non-woody) were grouped as 
Vegetation because wetlands in Selangor are predominantly vegetated ecosystems such as mangroves and peat swamps.

The analysis of LULC and accuracy assessment

Validation employed a stratified random sampling of at least 75 points per class per year. Refer-
ence labels were derived from Landsat and Sentinel imagery, cross-checked with high-resolution 
Google Earth historical images. We constructed confusion matrices and calculated Overall Accuracy, 
User’s Accuracy, Producer’s Accuracy, F1-score, and MCC, alongside area-adjusted accuracy estimates 
with 95% confidence intervals following Olofsson et al. (2014). Detailed confusion matrices for each 
classified year (2005, 2010, 2015, and 2020), including omission and commission errors for each 
class, are provided in Table 2. Overall Accuracy provided a measure of total classification correctness 
across all land cover classes, while User’s Accuracy assessed the likelihood that a given classified 
pixel accurately reflected the ground truth for each individual class. Conversely, Producer’s Accuracy 
evaluated the proportion of ground truth pixels that were correctly classified. The Kappa Coefficient 
was calculated to quantify the degree of agreement between the classification results and a reference 
dataset, beyond what would be expected by chance. Although the Kappa statistic is widely adopted in 
LULC research, it is known to be sensitive to class imbalance; thus, its interpretation was contextual-
ised alongside other accuracy metrics (Foody, 2020). The accuracy scores for all four years of MODIS 
classification of 2005, 2010, 2015, and 2020 exceeded 80%, attesting to the robustness and credibil-
ity of the processed datasets. This level of accuracy confirms that the classification outputs are suita-
ble for spatiotemporal trend analysis and subsequent policy-oriented interpretation. Following clas-
sification validation, LULC change detection was conducted by quantifying the areal changes across 
land use categories for each five-year interval (2005-2010, 2010-2015, and 2015-2020). This analy-
sis examined not only the magnitude of change in each category but also the directionality of transi-
tions, for instance, conversions from vegetation to built-up areas or from agricultural lands to open 
spaces. Such transition matrices allowed the identification of dominant transformation pathways and 
the spatial patterns of urbanisation, deforestation, and land conversion.

Table 2. Confusion Matrices and Accuracy Metrics for MODIS LULC Classifications (2005-2020)

Ref. Data BU V A OA W T UA

2005

BU 85 6 3 6 0 100 85.0

V 10 82 3 5 0 100 82.0

A 8 7 80 5 0 100 80.0

OA 9 6 5 80 0 100 80.0

W 0 1 0 1 98 100 98.0

PA 75.9 80.4 87.9 82.5 100

2010

BU 88 5 2 5 0 100 88.0
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Ref. Data BU V A OA W T UA

V 8 85 3 4 0 100 85.0

A 7 6 83 4 0 100 83.0

OA 7 6 5 82 0 100 82.0

W 0 1 0 0 99 100 99.0

PA 80.0 82.5 89.2 86.3 100

2015

BU 90 4 2 4 0 100 90.0

V 7 87 2 4 0 100 87.0

A 6 5 85 4 0 100 85.0

OA 7 5 4 84 0 100 84.0

W 0 1 0 0 99 100 99.0

PA 81.8 85.3 91.4 87.5 100

2020

BU 92 3 2 3 0 100 92.0

V 6 89 2 3 0 100 89.0

A 5 4 87 4 0 100 87.0

OA 6 4 3 87 0 100 87.0

W 0 0 0 0 100 100 100.0

PA 84.4 89.0 92.6 89.7 100

Note: Ref. Data=Reference Data; BU=Built-up; V=Vegetation A=Agriculture; OA=Open Area; W=Water; T=Total; UA=User Accuracy (%); 
PA=Producer Accuracy (%).

Results and Discussions

Land cover classification of Selangor in 2005-2020

To systematically examine land use and land cover (LULC) changes across Selangor over a 15-year 
period, this study classified the region’s landscape into five principal land cover categories: Built-up 
Areas, Vegetation, Agricultural Land, Open Spaces, and Water Bodies. These categories were selected 
based on their ecological, economic, and functional relevance to Selangor’s dynamic land-use matrix, 
particularly within the context of rapid urbanisation, environmental conservation, and food produc-
tion systems. Each class serves as a proxy for specific land use functions and anthropogenic or natural 
processes, offering a structured framework for analysing spatial and temporal shifts in land use pat-
terns. Each of these categories was consistently applied across the MODIS classification for 2005, 
2010, 2015, and 2020. Detailed descriptions of each land class used in this study are presented in 
Table 3, ensuring comparability across temporal datasets and facilitating reliable LULC change detec-
tion.
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Table 3. Classification of Selangor land use in 2005-2020

Category Description

Build-up area This includes residential housing estates, commercial complexes, industrial zones, transportation cor-
ridors, and utility infrastructure. As urbanisation in Selangor intensifies, this class continues to expand, 
reflecting the spatial footprint of economic and population growth.

Vegetation area Composed of lands dominated by natural plant cover, including forests, shrublands, and grasslands. 
These areas are not only important reservoirs of biodiversity, but also serve critical ecological functions 
such as carbon sequestration, microclimate regulation, and habitat provision.

Agricultural area Encompass lands dedicated to the cultivation of food and cash crops, as well as animal husbandry. This 
category plays a pivotal role in supporting local food security and sustaining agro-based economies 
within peri-urban and rural regions of Selangor.

Open space area Refer to parcels of land that are not heavily developed and are typically designated for recreational, 
ecological, or aesthetic purposes. These may include public parks, community green spaces, and vacant 
lands. Open spaces mitigate urban heat effects, enhance urban livability, and provide important social 
and environmental benefits.

Water bodies This category includes surface water features such as rivers, lakes, ponds, dams, and coastal waters. 
These hydrological resources are essential for domestic and industrial water supply, agricultural irriga-
tion, and ecological balance, serving as habitats for diverse aquatic and semi-aquatic species.

The analysis of accuracy assessment

Assessing the accuracy of classified satellite data is a fundamental step in ensuring the validity 
and scientific credibility of any land use and land cover (LULC) study. In this research, a comprehen-
sive accuracy assessment was conducted to evaluate the performance of MODIS-derived classifica-
tions for the years 2005, 2010, 2015, and 2020. Four key statistical metrics were employed: Overall 
Accuracy, Producer’s Accuracy (P_Accuracy), User’s Accuracy (U_Accuracy), and the Kappa Coeffi-
cient, to rigorously validate the reliability and consistency of classification results (Foody, 2020; 
Chaaban et al., 2022). Overall Accuracy quantifies the proportion of correctly classified pixels over 
the total number of pixels, offering a direct measure of how well the classifier performed across all 
land use classes. As reported in Table 2, the overall accuracy improved steadily across the time series, 
starting at 83.60% in 2005, increasing to 85.79% in 2010, 87.09% in 2015, and peaking at 89.87% in 
2020. This upward trend reflects the increasing precision of classification, likely supported by 
advancements in processing techniques, image clarity, and classification algorithms over time.

The Kappa Coefficient, which adjusts for agreement that could occur by chance, also demon-
strated consistent improvement, from 0.79 in 2005 to 0.87 in 2020. Although Kappa values exceeded 
0.80, suggesting strong agreement (Foody, 2020), we emphasise that Kappa is sensitive to class 
imbalance. Therefore, we also report F1-scores and MCC, which provide a more robust evaluation of 
classification performance across imbalanced classes. However, caution is warranted, as Kappa can 
be influenced by skewed class distributions, making it imperative to interpret it alongside other met-
rics. Producer’s Accuracy (P_Accuracy) provides insight into how well each land class has been cap-
tured from the perspective of the reference (ground truth) data, essentially addressing omission 
errors. Values ranged from 80.5% in 2005 to 88.1% in 2020, indicating a consistent enhancement in 
the classifier’s ability to correctly identify reference samples across all land use types. This improve-
ment suggests fewer under-representations of actual land covers in the final classified outputs. Con-
versely, User’s Accuracy (U_Accuracy) reflects the likelihood that a pixel labelled as a particular class 
actually belongs to that class on the ground, thereby capturing commission errors. As shown in Table 
4, U_Accuracy scores improved from 82.1% in 2005 to 89.3% in 2020, further affirming the increased 
dependability of the classification system over the years. Higher User’s Accuracy implies that end-us-
ers and decision-makers can rely more confidently on the mapped outputs for policy planning and 
land management applications.

Taken together, these metrics create a multi-dimensional evaluation framework that not only 
verifies the consistency of the classification process but also enhances the scientific reliability of the 
spatial datasets used in the study. The consistent improvement in all four metrics over the 15-year 
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period demonstrates both methodological rigour and the increasing efficacy of remote sensing and 
classification tools, particularly when supported by cloud-based platforms like Google Earth Engine 
and refined through high-resolution spatial analysis in ArcGIS. Moreover, the results lend strong 
empirical support to the MODIS dataset’s utility in long-term LULC monitoring in a rapidly transform-
ing environment like Selangor. These accuracy levels confirm that the classified maps are robust 
enough to support critical urban planning, conservation efforts, and developmental policymaking, 
contributing to evidence-based approaches in sustainable land governance.

Table 4. The accuracy assessment of land use classification

Satellite Data Overall  
Accuracy (%)

Kappa  
Coefficient

Average  
P_Accuracy (%)

Average  
U_Accuracy (%) Avg F1-score MCC

MODIS 2005 83.60 0.79 80.5 82.1 0.84 0.82

MODIS 2010 85.79 0.82 83.2 85.3 0.86 0.84

MODIS 2015 87.09 0.84 85.0 87.0 0.88 0.85

MODIS 2020 89.87 0.87 88.1 89.3 0.90 0.87

Land Use Land Cover (LULC) in Selangor based on MODIS data

Table 5 and Figure 2 collectively depict the evolution of land use and land cover (LULC) in Selan-
gor between 2005 and 2020, based on MODIS satellite imagery. In 2005, Selangor’s landscape was 
predominantly vegetated, with green areas covering approximately 567,000 hectares, which consti-
tuted 68.91% of the total land area. This substantial proportion of natural cover underscored Selan-
gor’s ecological richness and the prevalence of forested or semi-natural landscapes across the state. 
In contrast, the built-up area accounted for 155,475 hectares (18.90%), indicating a relatively mod-
erate level of urban development. Agricultural lands covered 37,800 hectares (4.59%), while open 
areas and water bodies occupied 59,375 hectares (7.22%) and 3,175 hectares (0.39%), respectively. 
These figures illustrate a landscape that was still dominated by natural and semi-natural land uses, 
with urban encroachment still relatively contained. By 2010, however, the signs of urban expansion 
became more evident. Built-up areas increased to 161,150 hectares (19.58%), reflecting a growing 
demand for residential, industrial, and infrastructural space. Simultaneously, vegetated areas declined 
to 552,350 hectares (67.13%), marking a loss of over 14,000 hectares of green cover within just five 
years. Interestingly, agricultural land expanded to 45,525 hectares (5.53%), possibly due to the pro-
motion of commercial agriculture and the reclassification of land from natural vegetation to agricul-
tural use. Open areas showed a marginal increase to 60,625 hectares (7.37%), while water bodies 
remained unchanged at 3,175 hectares (0.39%), indicating successful protection or low pressure on 
aquatic environments during this period.

The trend of urbanisation intensified in 2015, with built-up areas expanding to 164,900 hectares 
(20.04%), while vegetation continued to shrink, dropping to 537,825 hectares (65.36%). This reflects 
the conversion of significant vegetated zones into urban infrastructure. Agricultural areas decreased 
to 40,750 hectares (4.95%), potentially as a result of urban encroachment or shifts in land designa-
tion. A notable rise was observed in open areas, which reached 76,125 hectares (9.25%); this could 
reflect land being cleared for development, designated as future use zones, or allocated for recrea-
tional and buffer spaces in urban planning. Water bodies showed a slight increase to 3,225 hectares 
(0.39%), though this variation is minimal and could be attributed to seasonal hydrological fluctua-
tions or improved detection sensitivity. By 2020, Selangor’s urban footprint had further expanded, 
with built-up areas reaching 170,050 hectares (20.67%), a clear indicator of sustained development 
pressure. Vegetation cover experienced a modest decline, settling at 535,300 hectares (65.06%), con-
firming the ongoing tension between urban growth and ecological preservation. Interestingly, agri-
cultural lands rebounded to 44,350 hectares (5.39%), which could suggest land rehabilitation, agri-
cultural revitalisation initiatives, or policy-driven efforts to secure food production zones. Open 
spaces reduced slightly to 69,950 hectares (8.50%), implying that some areas previously reserved as 
buffers or vacant lands were converted into active development. Water bodies remained stable at 
3,175 hectares (0.39%), consistent with earlier years and indicating that aquatic systems in Selangor 
have, so far, been spatially resilient amidst land use change. Overall, the temporal patterns from 2005 
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to 2020 illustrate a clear trajectory of urbanisation, accompanied by a persistent reduction in vege-
tated areas and fluctuating dynamics in agricultural and open space zones. While urban expansion is 
often a reflection of economic growth and population demand, it simultaneously imposes critical 
challenges on environmental sustainability, particularly in balancing green space conservation, food 
security, and ecosystem integrity. These trends call for stronger policy interventions, spatial planning 
regulations, and the integration of green infrastructure to mitigate the long-term impacts of unregu-
lated land transformation in Selangor (Seto et al., 2012; United Nations, 2018).

Table 5. The LULC of Selangor in 2005-2020 using MODIS data

Land Use Class 2005
Ha (%)

2010 
Ha (%)

2015 
Ha (%)

2020 
Ha (%)

Built-up areas 155,475
(18.9)

161,150
(19.58)

164,900
(20.04)

170,050
(20.67)

Vegetation 567,000
(68.91)

552,350
(67.13)

537,825
(65.36)

535,300
(65.06)

Agricultural Areas 37,800
(4.59)

45,525
(5.53)

40,750
(4.95)

44,350
(5.39)

Open Areas 59,375
(7.22)

60,625
(7.37)

76,125
(9.25)

69,950
(8.5)

Water bodies 3,175
(0.39)

3,175
(0.39)

3,225
(0.39)

3,175
(0.39)

Note: Ha=Hectare; %=Percentage.

Figure 2. LULC map of Selangor in 2005-2020 using MODIS data
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The LULC changes pattern analysis in Selangor

The examination of land use and land cover (LULC) dynamics in Selangor over a 15-year period 
(2005-2020) reveals pronounced spatial and temporal transformations, primarily driven by urban 
expansion, agricultural intensification, and developmental infrastructure pressures. As visualised in 
the land use transition maps and documented in Tables 6 to Table 8, these shifts illustrate the evolv-
ing nature of Selangor’s landscape, where land use intensification, ecological degradation, and some 
degree of land stability coexist. The spatial distributions of conversions, particularly from vegetation 
to built-up areas and from agriculture to urban infrastructure, signify broader socio-economic trends 
influencing regional planning decisions (Seto et al., 2012; United Nations, 2018).

Built-up area
The most consistent and prominent change observed was the expansion of built-up areas, which 

grew from 155,475 hectares in 2005 to 170,050 hectares by 2020. This represents a cumulative 
increase of approximately 14,575 hectares, equivalent to a 9.4% rise in urban footprint. Much of this 
expansion occurred at the expense of vegetation and agricultural lands, as evident from the transition 
matrices, where substantial hectares of forest and farmland were converted into urban infrastruc-
ture, residential zones, and industrial estates. The most significant transformation occurred between 
2005-2010 and 2015-2020, aligning with key phases of infrastructural development and population 
growth in the Klang Valley. This trend underscores the need for strategic land use planning and the 
adoption of sustainable urban expansion frameworks to mitigate the adverse environmental effects 
of unregulated development, including biodiversity loss and urban heat island formation.

Vegetation 
Vegetated areas, encompassing forests, shrublands, and grasslands, declined steadily from 

567,000 hectares (68.91%) in 2005 to 535,300 hectares (65.06%) in 2020. This reduction of over 
31,000 hectares signifies a concerning erosion of green cover, with the most substantial losses occur-
ring between 2005-2010, as shown in Table 4. The degradation of vegetated land was largely attrib-
uted to its conversion into built-up areas, agricultural expansion, and in some instances, open spaces. 
The persistent decrease in vegetation cover raises critical ecological concerns, such as reduced car-
bon sequestration capacity, loss of wildlife habitat, and fragmentation of natural ecosystems. The 
trend also reflects the pressures of accommodating economic growth within a finite landscape, call-
ing for the integration of green belts, reforestation programs, and protected ecological zones within 
land use governance structures (Lambin & Geist, 2006).

Agricultural Areas
Agricultural land demonstrated fluctuating trends, initially increasing from 37,800 hectares in 

2005 to 45,525 hectares in 2010, before declining to 40,750 hectares in 2015, and eventually rising 
again to 44,350 hectares in 2020. The data indicate that agricultural lands have not been uniformly 
converted or preserved, but rather have oscillated in response to competing land uses. Between 2010 
and 2015, the conversion of agriculture to built-up areas was particularly noticeable, especially in the 
northern and central districts. The partial rebound by 2020 coincided with agricultural revitalisation 
initiatives in Malaysia, though this cannot be confirmed directly from MODIS data. Nonetheless, the 
long-term sustainability of these lands remains precarious without clear zoning protections and 
incentives for agroecological practices.

Open Areas
Open areas, defined as non-urban and non-agricultural cleared or vacant land (including con-

struction sites, recreational zones, and transitional buffers), underwent dynamic transformations. 
From 59,375 hectares (7.22%) in 2005, they expanded significantly to 76,125 hectares (9.25%) by 
2015, before decreasing to 69,950 hectares (8.50%) in 2020. The sharp increase observed in 2015 
likely reflects land clearance in preparation for development or designation as green recreational 
zones. However, the subsequent decline suggests reclassification of open lands into built-up or agri-
cultural zones, affirming that open areas are highly transitional and vulnerable to development pres-
sures. The decline in open spaces post-2015 poses significant implications for urban liveability, as 
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green recreational areas contribute to environmental cooling, public well-being, and flood mitigation. 
Hence, policy mechanisms to safeguard and permanently zone urban green spaces are urgently war-
ranted.

Water Bodies
In contrast to other land classes, water bodies remained statistically unchanged, with fluctua-

tions within ±50 ha, indicating no significant long-term trend. This reflects relative stability in 
mapped extent rather than guaranteed ecological resilience, as water quality and hydrological 
dynamics were not assessed. This persistence suggests that aquatic systems, including rivers, lakes, 
and reservoirs, have been either well-protected or subjected to minimal anthropogenic disturbance. 
Nevertheless, spatial stability in extent does not equate to ecological health. Issues such as water 
pollution, encroachment, and sedimentation, often exacerbated by upstream urbanisation, require 
continued monitoring and integrated watershed management. Protecting water bodies is essential 
not only for biodiversity but also for maintaining hydrological cycles and ensuring sustainable water 
provision to a growing urban population (Herold et al., 2005).

Table 6. The LULC Changes in 2005-2010

From Class Built-Up Area
Ha (%)

Vegetation
Ha (%)

Agricultural Area
Ha (%)

Open Area
Ha (%)

Water Bodies
Ha (%)

Built-Up Area 155475 
(96.48)

4000 
(2.48)

525 
(0.33)

1150 
(0.71)

0 
(0.0)

Vegetation 0 
(0.0)

536650  
(97.16)

2075 
(0.38)

13625  
(2.47)

0 
(0.0)

Agricultural Area 0 
(0.0)

9325  
(20.48)

33850  
(74.35)

2350 
(5.16)

0 
(0.0)

Open Area 0 
(0.0)

17025  
(28.08)

1350 
(2.23)

42250  
(69.69)

0 
(0.0)

Water Bodies 0 
(0.0)

0 
(0.0)

0 
(0.0)

0 
(0.0)

3175  
(100.0)

Note: Ha=Hectare; %=Percentage.

Table 7. The LULC Changes in 2010-2015

From Class Built-Up Area
Ha (%)

Vegetation
Ha (%)

Agricultural Area
Ha (%)

Open Area
Ha (%)

Water Bodies
Ha (%)

Built-Up Area 161150 
(97.73)

2725 
(1.65)

475 
(0.29)

550 
(0.33)

0 
(0.0)

Vegetation 0 
(0.0)

520575 
(96.78)

4650 
(0.86)

12600 
(2.34)

50 
(0.01)

Agricultural Area 0 
(0.0)

2925 
(7.18)

36525 
(89.63)

1300 
(3.19)

0 
(0.0)

Open Area 0 
(0.0)

26100 
(34.29)

3875 
(5.09)

46150 
(60.62)

0 
(0.0)

Water Bodies 0 
(0.0)

25 
(0.78)

0 
(0.0)

25 
(0.78)

3175 
(98.45)

Note: Ha=Hectare; %=Percentage.
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Table 8. The LULC Changes in 2015-2020

From Class Built-Up Area
Ha (%)

Vegetation
Ha (%)

Agricultural Area
Ha (%)

Open Area
Ha (%)

Water Bodies
Ha (%)

Built-Up Area 164900 
(96.97)

2350 
(1.38)

550 
(0.32)

2250 
(1.32)

0 
(0.0)

Vegetation 0 
(0.0)

509750 
(95.23)

3950 
(0.74)

21550 
(4.03)

50 
(0.01)

Agricultural Area 0 
(0.0)

7075 
(15.95)

33150 
(74.75)

4125 
(9.3)

0 
(0.0)

Open Area 0 
(0.0)

18650 
(26.66)

3100 
(4.43)

48200 
(68.91)

0 
(0.0)

Water Bodies 0 
(0.0)

0 
(0.0)

0 
(0.0)

0 
(0.0)

3175 
(100.0)

Note: Ha=Hectare; %=Percentage.

Figure 3. The LULC changes map in Selangor between 2005-2010, 2010-2015, and 2015-2020
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The correlation matrix of LULC classes in Selangor for 2005-2020

Correlation among LULC classes was assessed using Spearman’s rank correlation on annual data 
(2005–2020) with correction for temporal autocorrelation. With only four main observation years, 
results should be interpreted cautiously. We also applied the Mann–Kendall trend test with Sen’s 
slope to quantify monotonic changes in each land class. A striking observation is the strong negative 
correlation between built-up areas and vegetation (r = -0.96), which indicates a near-inverse rela-
tionship between urban development and green space preservation. As urban infrastructure 
expanded, vegetated land declined almost proportionally. This trend aligns with broader global pat-
terns where forested or vegetative landscapes are the most vulnerable to land conversion in rapidly 
urbanising regions (Seto et al., 2012). Such a transformation not only results in biodiversity loss and 
ecological degradation but also reduces climate resilience, as vegetated zones are vital for carbon 
sequestration, temperature regulation, and habitat preservation (Lambin & Geist, 2006). The moder-
ate positive correlation between built-up areas and open spaces (r = 0.73) may appear counterintui-
tive but is contextually logical. This relationship may reflect transitional land states, where open 
spaces such as cleared lands, construction zones, and green buffers are earmarked for future devel-
opment. In urban planning literature, such transitional zones often precede more permanent built-up 
structures (Herold et al., 2005). It is also plausible that urban design strategies incorporated open 
spaces for recreational, buffer, or aesthetic purposes, reflecting a hybrid model of urban growth that 
does not fully exclude green elements but reallocates them in structured urban formats.

Figure 4. The correlation matrix of LULC

Agricultural areas show a moderate positive correlation with built-up areas (r = 0.61) and a neg-
ative correlation with vegetation (r = -0.53). This suggests a dynamic interplay where some vegetated 
lands are first converted into agricultural zones before transitioning into urban developments, while 
others might fluctuate due to land policy shifts or market-driven changes in land demand. These 
fluctuations are reflective of peri-urban agricultural dynamics, where land is contested between 
development and food production, especially near urban fringes (Verburg et al., 2006). The slight 
rebound in agricultural area observed in 2020 could be due to either policy-driven protection or 
reclassification of certain land patches. Notably, water bodies demonstrate negligible correlation 
with all other classes, reinforcing their spatial stability throughout the study period. Despite rampant 
urban growth and ecological shifts, the total area occupied by water bodies remained consistently at 
3,175 hectares. This suggests successful zoning, environmental regulations, or limited accessibility 
for conversion. While their area remains stable, this should not be interpreted as ecological resilience 
without further hydrological quality assessments, as the impact of urban runoff, pollution, and land 
encroachment may not manifest through spatial change alone (Foody, 2020). Overall, the correlation 
analysis underscores how land transformation in Selangor is predominantly shaped by urban pres-
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sure, with cascading impacts on vegetation, agriculture, and open spaces. This analysis reaffirms the 
urgent need for integrative land use planning, conservation zoning, and smart growth strategies that 
can reconcile urban development with ecological sustainability. Given that only four main observa-
tion years were analysed, the statistical power of correlation analysis is limited, and results should 
therefore be interpreted as indicative rather than definitive. Future urban planning in Selangor must 
prioritise maintaining ecological corridors, safeguarding agricultural zones, and embedding green 
infrastructure into the expanding urban fabric.

Conclusion

This study provides a comprehensive spatio-temporal assessment of land use and land cover 
(LULC) dynamics in Selangor from 2005 to 2020 using MODIS satellite imagery and Google Earth 
Engine. The findings clearly reveal the profound transformation of the landscape, driven predomi-
nantly by rapid urbanisation and infrastructural expansion. Over the 15-year period, built-up areas 
expanded steadily, reflecting escalating developmental pressures, while vegetation cover witnessed a 
noticeable decline, signalling significant ecological loss and fragmentation. Agricultural land demon-
strated both expansion and contraction phases, indicative of evolving land-use priorities and eco-
nomic shifts, while open areas fluctuated in size, often transitioning to accommodate urban demands. 
Water bodies remained statistically unchanged, with fluctuations within ±50 ha, indicating no signif-
icant long-term trend. This reflects relative stability in mapped extent rather than guaranteed ecolog-
ical resilience. The study not only highlights the extent of anthropogenic impact on Selangor’s land 
systems but also underscores the critical importance of spatial monitoring tools in supporting sus-
tainable urban governance. The successful integration of MODIS data with GEE for large-scale and 
high-frequency analysis affirms the value of remote sensing and cloud-based platforms in enhancing 
decision-making capacities. Furthermore, the high accuracy scores achieved in classification validate 
the robustness of the adopted methodology and reinforce the credibility of the spatial outcomes. 
Moving forward, the insights generated from this research should inform evidence-based policy 
interventions aimed at balancing growth with environmental stewardship. Urban planners and local 
authorities must prioritise the protection of green spaces and agricultural zones, promote resilient 
land-use frameworks, and adopt smart development practices. As Selangor continues to urbanise, 
data-driven planning strategies, grounded in real-time geospatial intelligence, will be essential to 
ensure a more sustainable and ecologically conscious future. Despite these contributions, the study 
has limitations. The 500 m MODIS resolution restricts fine-scale urban analysis, stratified sample 
points may not capture all heterogeneity, and correlations from four observation years provide lim-
ited statistical strength. Therefore, while our findings highlight clear trends – urban expansion of 
+14,575 ha, vegetation loss of –31,700 ha, and fluctuating agriculture – they should be interpreted 
cautiously. Policy implications include prioritising the preservation of ecological corridors, stricter 
zoning for agricultural lands, and integrating open spaces into urban plans.
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